设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为此两个函数的生成函数.
(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;
(2)若函数y=a1x+b1与y=a2x+b2的图象的交点为P,判断点P是否在此两个函数的生成函数的图象上,并说明理由.
设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为此两个函数的生成函数.(1)当x=1时,求
答案:2 悬赏:70 手机版
解决时间 2021-04-04 19:22
- 提问者网友:战皆罪
- 2021-04-04 00:06
最佳答案
- 五星知识达人网友:鸽屿
- 2021-04-04 01:15
解:(1)当x=1时,
y=m(x+1)+n(2x)
=m(1+1)+n(2×1)
=2m+2n
=2(m+n),
∵m+n=1,
∴y=2;
(2)点P在此两个函数的生成函数的图象上,
设点P的坐标为(a,b),
∵a1×a+b1=b,a2×a+b2=b,
∴当x=a时,y=m(a1x+b1)+n(a2x+b2),
=m(a1×a+b1)+n(a2×a+b2)
=mb+nb=b(m+n)=b,
即点P在此两个函数的生成图象上.解析分析:(1)根据题目提供信息,直接将函数解析式代入即可求得函数y=x+1与y=2x的生成函数的值;
(2)只要证出点P的坐标符和生成函数的解析式即可.点评:此题是一道新定义信息题,难度不大,考查了同学们的阅读理解和对新知识的接受能力,只要仔细阅读,就可根据相关函数知识作出解答.
y=m(x+1)+n(2x)
=m(1+1)+n(2×1)
=2m+2n
=2(m+n),
∵m+n=1,
∴y=2;
(2)点P在此两个函数的生成函数的图象上,
设点P的坐标为(a,b),
∵a1×a+b1=b,a2×a+b2=b,
∴当x=a时,y=m(a1x+b1)+n(a2x+b2),
=m(a1×a+b1)+n(a2×a+b2)
=mb+nb=b(m+n)=b,
即点P在此两个函数的生成图象上.解析分析:(1)根据题目提供信息,直接将函数解析式代入即可求得函数y=x+1与y=2x的生成函数的值;
(2)只要证出点P的坐标符和生成函数的解析式即可.点评:此题是一道新定义信息题,难度不大,考查了同学们的阅读理解和对新知识的接受能力,只要仔细阅读,就可根据相关函数知识作出解答.
全部回答
- 1楼网友:话散在刀尖上
- 2021-04-04 02:43
就是这个解释
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |