如图,在平面直角坐标系中,一个方格的边长为1个单位长度,三角形MNQ是三角形ABC经过某种变换后得到的图形.
(1)请分别写出点A与点M,点B与点N,点C与点Q的坐标,并观察它们之间的关系;
(2)已知点P是三角形ABC内一点,其坐标为(-3,2),探究其在三角形MNQ中的对应点R的坐标,并猜想线段AC和线段MQ的关系.
如图,在平面直角坐标系中,一个方格的边长为1个单位长度,三角形MNQ是三角形ABC经过某种变换后得到的图形.(1)请分别写出点A与点M,点B与点N,点C与点Q的坐标,
答案:2 悬赏:30 手机版
解决时间 2021-04-10 16:46
- 提问者网友:雾里闻花香
- 2021-04-10 01:04
最佳答案
- 五星知识达人网友:詩光轨車
- 2021-04-10 02:42
解:(1)点A(-4,1),点M(4,-1),
点B(-1,2),点N(1,-2),
点C(-3,4),点Q(3,-4),
它们分别关于坐标原点对称;
(2)点P(-3,2)的对应点R的坐标为(3,-2),
AC∥MQ.解析分析:(1)根据平移直角坐标系写出各点的坐标,然后根据关于原点对称的点的特征解答;
(2)根据(1)的结论写出点R的坐标,根据网格结构判断AC∥MQ.点评:本题考查了坐标与图形变化-旋转,熟练掌握在平面直角坐标系中写出点的坐标是解题的关键.
点B(-1,2),点N(1,-2),
点C(-3,4),点Q(3,-4),
它们分别关于坐标原点对称;
(2)点P(-3,2)的对应点R的坐标为(3,-2),
AC∥MQ.解析分析:(1)根据平移直角坐标系写出各点的坐标,然后根据关于原点对称的点的特征解答;
(2)根据(1)的结论写出点R的坐标,根据网格结构判断AC∥MQ.点评:本题考查了坐标与图形变化-旋转,熟练掌握在平面直角坐标系中写出点的坐标是解题的关键.
全部回答
- 1楼网友:蓝房子
- 2021-04-10 02:53
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯