问:数列{An}满足A1=2,A2=5,An+2=3An+1—2An,
(1)求证:数列{An+1—An}是等比数列;
(2)求数列{An}的通项公式An;
(3)求数列{An}的前n项和Sn
问:数列{An}满足A1=2,A2=5,An+2=3An+1—2An,
(1)求证:数列{An+1—An}是等比数列;
(2)求数列{An}的通项公式An;
(3)求数列{An}的前n项和Sn
(1) An+2=3An+1—2An变形即:An+2-An+1=2(An+1-An),所以,(An+2-An+1)/(An+1-An)=2,所以,数列{An+1—An}是等比数列
(2)由(1)可知,得:An+1—An=(A2—A1)x2^(n-1)=3x2^(n-1),所以,An=(An—An-1)+(An-1—An-2)+(An-2—An-3)+----+(A2—A1)+A1=3(2^(n-2)+2^(n-3)+2^(n-4)+---+1)+1=3(2^(n-1)-1)+1=3x2^(n-1)+2.
(3)因为An=3x2^(n-1)+2,所以,Sn=3(1+2+4+-------+2^(n-1))+2n=3x2^n+2n