多元函数f(x,y)为什么要化成那样?极限是怎么求出来的?
答案:1 悬赏:10 手机版
解决时间 2021-01-19 22:56
- 提问者网友:杀手的诗
- 2021-01-19 17:49
多元函数f(x,y)为什么要化成那样?极限是怎么求出来的?
最佳答案
- 五星知识达人网友:摆渡翁
- 2021-01-19 17:59
还有当x->0时,tanx/x=1,arctanx/x=1
lim(x->0)(1+x)^(1/x)=e
lim(x->∞)(1+1/x)^x=e
lim(x->0)[x*sin(1/x)]=0
或者lim(x->∞)[(1/x)*sinx]=0
等价无穷小代换,
当x→0时, sinx~x tanx~x arcsinx~x arctanx~x (1-cosx)~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0)
等价无穷小在应用的时候,必须是相乘或相除的关系才能代换
比如lim(x->0)tanx/x =lim(x->0)x/x=1
但是lim(x->0)(tanx-x)/e^x像这种情况,就不能将tanx~x得到极限为0的结论
万能公式都是可以用定理以及洛必达法则或等价无穷小代换来求得的,所以掌握方法最重要,因为公式容易记混的.
lim(x->0)(1+x)^(1/x)=e
lim(x->∞)(1+1/x)^x=e
lim(x->0)[x*sin(1/x)]=0
或者lim(x->∞)[(1/x)*sinx]=0
等价无穷小代换,
当x→0时, sinx~x tanx~x arcsinx~x arctanx~x (1-cosx)~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0)
等价无穷小在应用的时候,必须是相乘或相除的关系才能代换
比如lim(x->0)tanx/x =lim(x->0)x/x=1
但是lim(x->0)(tanx-x)/e^x像这种情况,就不能将tanx~x得到极限为0的结论
万能公式都是可以用定理以及洛必达法则或等价无穷小代换来求得的,所以掌握方法最重要,因为公式容易记混的.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯