拓扑空间(R,T)的开集有没有可能是个闭区间?这个“开闭”跟区间的“开闭”是不是完全不一样?刚学,
答案:1 悬赏:10 手机版
解决时间 2021-04-06 11:10
- 提问者网友:温柔港
- 2021-04-06 00:48
拓扑空间(R,T)的开集有没有可能是个闭区间?这个“开闭”跟区间的“开闭”是不是完全不一样?刚学,
最佳答案
- 五星知识达人网友:上分大魔王
- 2021-04-06 02:26
既是闭集又是开集的只有全空间与空集。
区间开闭可以看做拓朴空间的开集、闭集的例子。追问比如T是{空集,R,{1}}。然后由于{1}属于T,所以,{1}比如“T是{空集,R,{1}}。然后由于{1}属于T,所以比如T是{空集,R,{1}}。然后由于{1}属于T,所以{1}是个开集。”这个说法对吗?啊…之前说的好混乱,重说…
比如“T是{空集,R,{1}}。然后由于{1}属于T,所以{1}是个开集。”这个说法对吗?追答是否能作为开集 要验证它是否满足T所应有的所有性质追问那我这个例子满足吗?我感觉好像是满足的啊…追答按定义是 但这个拓朴空间不是常义下的 和常说的开区间无关追问“常定义”是什么样的?追答指开区间生成的有限交集与无限并集生成的集合称为开集的那个拓朴空间
区间开闭可以看做拓朴空间的开集、闭集的例子。追问比如T是{空集,R,{1}}。然后由于{1}属于T,所以,{1}比如“T是{空集,R,{1}}。然后由于{1}属于T,所以比如T是{空集,R,{1}}。然后由于{1}属于T,所以{1}是个开集。”这个说法对吗?啊…之前说的好混乱,重说…
比如“T是{空集,R,{1}}。然后由于{1}属于T,所以{1}是个开集。”这个说法对吗?追答是否能作为开集 要验证它是否满足T所应有的所有性质追问那我这个例子满足吗?我感觉好像是满足的啊…追答按定义是 但这个拓朴空间不是常义下的 和常说的开区间无关追问“常定义”是什么样的?追答指开区间生成的有限交集与无限并集生成的集合称为开集的那个拓朴空间
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯