求证:如果a,b是互质的正整数,c是整数,且方程ax+by=c ①,有一组整数解x0,y0,则此方程的一切整数解
答案:2 悬赏:70 手机版
解决时间 2021-03-08 11:49
- 提问者网友:嗝是迷路的屁
- 2021-03-07 20:36
求证:如果a,b是互质的正整数,c是整数,且方程ax+by=c ①,有一组整数解x0,y0,则此方程的一切整数解可以表示为x=x0?bty=y0+at,其中t=0,±1,±2,±3,….
最佳答案
- 五星知识达人网友:煞尾
- 2021-03-07 22:12
证明:因为x0,y0是方程①的整数解,当然满足ax0+by0=c,②
因此a(x0-bt)+b(y0+at)=ax0+by0=c.
这表明x=x0-bt,y=y0+at也是方程①的解.
设x′,y′是方程①的任一整数解,则有
ax′+by′=c.③
③-②得
a(x′-x0)=b′(y0-y′).④
∵a,b是互质的正整数即(a,b)=1,
∴即y′=y0+at,其中t是整数.将y′=y0+at代入④,即得x′=x0-bt.
∴x′,y′可以表示成x=x0-bt,y=y0+at的形式,
∴x=x0-bt,y=y0+at表示方程①的一切整数解.
因此a(x0-bt)+b(y0+at)=ax0+by0=c.
这表明x=x0-bt,y=y0+at也是方程①的解.
设x′,y′是方程①的任一整数解,则有
ax′+by′=c.③
③-②得
a(x′-x0)=b′(y0-y′).④
∵a,b是互质的正整数即(a,b)=1,
∴即y′=y0+at,其中t是整数.将y′=y0+at代入④,即得x′=x0-bt.
∴x′,y′可以表示成x=x0-bt,y=y0+at的形式,
∴x=x0-bt,y=y0+at表示方程①的一切整数解.
全部回答
- 1楼网友:西岸风
- 2021-03-07 22:59
没看懂什么意思?
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯