如图:在四边形ABCD中,点E在边CD上,连接AE、BE并延长AE交BC的延长线于点F,给出下列5个关系式:①AD∥BC,②DE=EC,③∠1=∠2,④∠3=∠4,⑤
答案:2 悬赏:40 手机版
解决时间 2021-04-09 11:34
- 提问者网友:溺爱和你
- 2021-04-09 00:29
如图:在四边形ABCD中,点E在边CD上,连接AE、BE并延长AE交BC的延长线于点F,给出下列5个关系式:①AD∥BC,②DE=EC,③∠1=∠2,④∠3=∠4,⑤AD+BC=AB.将其中三个关系式作为已知,另外两个作为结论,构成正确的命题.请用序号写出两个正确的命题:(书写形式:如果…那么…)(1)______;(2)______.
最佳答案
- 五星知识达人网友:一叶十三刺
- 2021-04-09 01:30
解:如果①②③,那么④⑤.理由如下:
∵AD∥BC,
∴∠1=∠F,∠D=∠ECF,
而DE=EC,
∴△AED≌△FEC,
∴AD=CF,
∵∠1=∠2,
∴∠2=∠F,
∴AB=BF,
而BF=BC+CF,
∴AD+BC=AB;
如果①③④,那么②⑤.理由如下:
∵AD∥BC,
∴∠1=∠F,
而∠1=∠2,
∴∠2=∠F,
∴BA=BF,
∵∠3=∠4,
∴BE平分AF,
即AE=EF,
易证△AED≌△FEC,
∴AD=CF,DE=EC,
而BF=BC+CF,
∴AD+BC=AB.
故
∵AD∥BC,
∴∠1=∠F,∠D=∠ECF,
而DE=EC,
∴△AED≌△FEC,
∴AD=CF,
∵∠1=∠2,
∴∠2=∠F,
∴AB=BF,
而BF=BC+CF,
∴AD+BC=AB;
如果①③④,那么②⑤.理由如下:
∵AD∥BC,
∴∠1=∠F,
而∠1=∠2,
∴∠2=∠F,
∴BA=BF,
∵∠3=∠4,
∴BE平分AF,
即AE=EF,
易证△AED≌△FEC,
∴AD=CF,DE=EC,
而BF=BC+CF,
∴AD+BC=AB.
故
全部回答
- 1楼网友:玩世
- 2021-04-09 02:40
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯