人工智能是如何应用于金融反欺/诈领/域的?具体技/术和场景如何?
答案:2 悬赏:30 手机版
解决时间 2021-03-06 07:08
- 提问者网友:蔚蓝的太阳
- 2021-03-05 22:25
人工智能是如何应用于金融反欺/诈领/域的?具体技/术和场景如何?
最佳答案
- 五星知识达人网友:不想翻身的咸鱼
- 2021-03-05 22:36
作为人工智能最重要的技术——机器的深度学习,其最大价值就是能够做特征表达,通过一个数学的复杂结构来表达一些以往很难描述的金融现象,因此特别适合处理风险、欺诈以及金融产品的营销这些依靠过往经验难以准确定量的事件。例如天云大数据为光大银行做过反欺诈模型
全部回答
- 1楼网友:梦中风几里
- 2021-03-05 23:00
一、什么是消费金融行业的反欺诈?
说起“反欺诈”,放在三年前提起或许还有很多人感到陌生,这种主要面向企业级的应用,通常深藏在银行、保险等金融行业的内部系统中,亦或者是各大互联网公司安全系统中,说起来总带着几分神秘感。
近些年,随着“互联网 金融”的迅速壮大,诞生出不少第三方公司,专门为金融机构提供风控和反欺诈服务, “反欺诈系统”这才在金融科技圈流传开来。
其实纵观整个金融服务业,尤其是借贷业,大家都面临着两种相同的风险:欺诈风险和信用风险。欺诈风险,主要指的是借贷申请人没有还款意愿;信用风险,主要指的是借贷申请人没有还款能力。在我国,放贷机构所承受的欺诈风险远超过信用风险。
对于这种情况,Maxent(猛犸反欺诈)的创始人张克曾说过:"金融是一个'刀口舔血'的行业,风控是生命线。没有好的风控,金融机构很难生存下去。所以,金融业反欺诈的风控需求一直很强劲。"
二、数据 技术能否满足反欺诈系统?
面对形形色色的欺诈份子和欺诈手段,如何解决欺诈风险,成为众多借贷公司的头号问题。反欺诈作为一个业务,流程包括三个步骤:
1、检测(Detect)。 从技术层面来看,利用算法,自动检测异常,从数据层面来看,建立黑名单,及时发现风险;
2、响应(Response)。对异常行为采取阻断一次交易、拉黑或者其他方式;
3、预防(Prevention)。将异常行为收录入黑名单等,固化成规则,如果下次再有行为触碰到规则,系统会进行预设的响应。
举一个例子,银行的反欺诈方法是建立基于专家经验的规则体系,其运作模式是:将遇到的每一次欺诈的行为特点记录下来形成“规则”,下次再遇到此类行为规则体系会自动做出人工介入或拉黑的响应。
但是,通过黑名单进行反欺诈检测会随着时间的推移失效,失效的速度可能会很快。因为黑名单的记录是基于之前发生的欺诈行为数据,欺诈份子的手段和技术不断迭代更新时,并没有一种有效的途径去预测或预防下一次将会发生怎样的欺诈行为。
消费信贷的普遍特点是小额、分散,互联网消费信贷还具有高并发特点,单单使用传统的专家规则体系是很难对抗互联网消费信贷中的欺诈的,整个行业都在等待一种新的技术跟专家规则体系协同作战,这时,有人提到了人工智能。
三、人工智能与反欺诈
说起人工智能,美国政府曾发布过一份报告(美国总统行政办公室和白宫科技政策办公室,《为人工智能的未来做好准备(Preparing for the Future of Artificial Intelligence)》)做出解释,“一些人将人工智能宽泛地定义为一种先进的计算机化系统,能够表现出普遍认为需要智能才能有的行为。其他人则将人工智能定义为一个不管在真实环境下遭遇何种情况,都能合理解决复杂问题或者采取合理行动以达成目标的系统
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯