永发信息网

如何用有限元中三角形基函数合成矩形区域

答案:1  悬赏:80  手机版
解决时间 2021-11-16 21:55
如何用有限元中三角形基函数合成矩形区域
最佳答案
(一)有限元方法的基础是变分原理和加权余量法
其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式 ,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形 网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合 同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数 ;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点 。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

对于有限元方法,其基本思路和步骤可归纳为
(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条 件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元 具有规则的几何形状,在选取基函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将 近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点 的参数值)的代数方程组,称为单元有限元方程。
(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进 行累加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件 、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件, 一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法 则对总体有限元方程进行修正满足。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭 方程组,采用适当的数值计算方法求解,可求得各节点的函数值

(二)Comsol软件采用的是加权余值法
有限元法的最主要的一个特点就是把要求的方程偏微分形式转化成积分形式,而这一过程主要通过两个途径:加权余值法和变分法。而等效积分弱形式是针对加权余值法来说的。把强形式转化为弱形式,是前期有限元的核心技术;随着技术的进步和发展,才慢慢将变分法引入到有限元,从一定程度上说,变分法比加权余值更加先进合理,其实现在的变分法还在逐渐进步和发展,当然也有一些争议,比如对我国胡海昌院士提出的广义变分原理独立变量数目的争议,但总体来说,变分法是优越于加权余值法的。这也是为什么大部分商业cae软件采用变分法的原因(COMSOL,FEPG除外)!
将微分方程转化为弱形式,这个弱并不是弱化对方程解的结果,而是弱化对解方程得要求,具体点是弱化待求变量的连续性,当然这种弱化是以提高权函数的连续性为代价的。通过引入权函数或试函数,将微分方程转化为等效积分方程,要使这一积分形式有解或者说存在,就必须对权函数和待求变量加以限制,将等效积分形式分步积分,得到的形式就称为等效积分弱形式。因为分步积分后,算子导数阶次降低,对待求变量的连续性降低,这就起到了弱化作用,将近似解带入微分方程会有余值,而这余值形式中又有我们前面引入的权函数,所以我们把这种余值的加权积分,称为加权余值法,这一名称应该就是这么来的。为了保证微分形式和积分形式是等效的 ,引入的权函数必须任意的,如果选权函数为待求变量解前面的形函数,那么这一形式就变成我们所说的伽辽金法(Galerkin法),因此可以说,伽辽金法是众多加权余值法中的一种,都是在近似试函数中选择参数,得到近似解。而里兹法(Ritz) 是基于变分原理的。有些人总不分变分和加权残值法,其实这两种方法是不同的,虽然有时候是等效的。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
请问AMD的推土机怎么样?FX6100怎么样?哪个
16款兰德酷路泽中网为什么有带延伸条的有的没
自从我从看守所出来以后感觉自己整个人变了好
钮扣电池AG13和AG3有什么不同
波兰能上太空么??
总领的英语是什么
以前张家口发电厂厂长,现在在大唐总部的安洪
看相说我要一生防水是什么意思
全友餐桌66802价格多少?
收到一个印尼发过来的信件,求翻译寄件人!急
冷冻鲫鱼第二次化开还可以吃吗
上海东庄海岸高尔夫俱乐部地址好找么,我有些
如何与“伤痛”相处,决定了将承受多少“痛苦
建筑图纸中KL1(2)300×900里面300指的是那两
老驴头的退休幸福生活全集
推荐资讯
听说流行定制东西的,都可以定制什么呀?
现在有哪家的车靠谱一些?
男孩叫高思雨会不会像女孩子的名字
奥斯卡最佳H3D动画
中国十大步行街有哪些?
糙米 小米 薏米 红豆可以一起煮吗?煮之前要
微信运动点赞
防盗门可不可以只换门框,不换门扇
求姐姐妄想日记的全集资源,磁力或百度云
爱普生L351不能扫描
在岳阳生活的外地人多吗????
数学题第七题和第八题
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?