已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),给出以下三个结论:
(1)f(1,5)=9;(2)f(5,1)=18;?(3)f(5,6)=26,其中正确结论的序号为________.
已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),给出以
答案:2 悬赏:60 手机版
解决时间 2021-01-03 19:26
- 提问者网友:孤山下
- 2021-01-03 14:41
最佳答案
- 五星知识达人网友:走死在岁月里
- 2021-01-22 07:06
解:∵f(m,n+1)=f(m,n)+2=f(m,n-1)+4=…=f(m,1)+2n
=2f(m-1,1)+2n=4f(m-2,1)=2n=…=2m-1f(1,1)+2n=2m-1+2n
∴f(1,n)=2n-1
则(1)f(1,5)=2×5-1=9正确;
又∵f(m+1,1)=2f(m,1)=4f(m-1,1)=2mf(1,1)=2m
∴f(n,1)=2n-1
∴f(5,1)=24=16正确;
由f(m,n+1)=2m-1+2n可得f(5,6)=24+2×5=26正确
故
=2f(m-1,1)+2n=4f(m-2,1)=2n=…=2m-1f(1,1)+2n=2m-1+2n
∴f(1,n)=2n-1
则(1)f(1,5)=2×5-1=9正确;
又∵f(m+1,1)=2f(m,1)=4f(m-1,1)=2mf(1,1)=2m
∴f(n,1)=2n-1
∴f(5,1)=24=16正确;
由f(m,n+1)=2m-1+2n可得f(5,6)=24+2×5=26正确
故
全部回答
- 1楼网友:持酒劝斜阳
- 2021-01-22 07:25
回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯