如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的
答案:2 悬赏:30 手机版
解决时间 2021-04-03 10:23
- 提问者网友:做自己de王妃
- 2021-04-02 15:10
如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有:________.
最佳答案
- 五星知识达人网友:woshuo
- 2020-12-05 15:52
①②③④解析分析:在△ABC中,AB=AC,AD是△ABC的平分线,可知直线AD为△ABC的对称轴,再根据图形的对称性,逐一判断.解答:∵在△ABC中,AB=AC,AD是△ABC的平分线,
根据等腰三角形底边上的“三线合一”可知,AD垂直平分BC,①正确;
由①的结论,已知DE⊥AB,DF⊥AC,可证△ADE≌△ADF(AAS)
故有AE=AF,DE=DF,②正确;
AD是△ABC的平分线,根据角平分线性质可知,AD上的点到B、C两点距离相等,③正确;
根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④.点评:本题考查了等腰三角形的判定和性质;利用三角形全等是正确解答本题的关键.
根据等腰三角形底边上的“三线合一”可知,AD垂直平分BC,①正确;
由①的结论,已知DE⊥AB,DF⊥AC,可证△ADE≌△ADF(AAS)
故有AE=AF,DE=DF,②正确;
AD是△ABC的平分线,根据角平分线性质可知,AD上的点到B、C两点距离相等,③正确;
根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④.点评:本题考查了等腰三角形的判定和性质;利用三角形全等是正确解答本题的关键.
全部回答
- 1楼网友:我住北渡口
- 2019-09-30 23:59
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯