求助,第一题怎么做
答案:1 悬赏:30 手机版
解决时间 2021-11-15 07:11
- 提问者网友:雾里闻花香
- 2021-11-14 23:12
求助,第一题怎么做
最佳答案
- 五星知识达人网友:雾月
- 2021-11-14 23:34
cos(α +π/6) - sinα
=cosα * cos(π/6) - sinα * sin(π/6) - sinα
= (√3/2) * cosα - (1/2) * sinα - sinα
= (√3/2) * cosα - (3/2) * sinα
= (√3) * [(1/2) * cosα - (√3/2) * sinα]
= (√3) * [cos(π/3) * cosα - sin(π/3) * sinα]
= (√3) * cos(α + π/3)
= 4√3 /5
可以得到:
cos(α + π/3) = 4/5
α + π/3 = arccos(4/5)
α = arccos(4/5) - π/3
α + π/12 = arccos(4/5) - π/3 + π/12 = arccos(4/5) - π/4
所以,
sin(α + π/12)
=sin[arccos(4/5) - π/4]
=sin[arccos(4/5)] * cos(π/4) - cos[arccos(4/5)] * sin(π/4)
= 3/5 * √2/2 - 4/5 * √2/2
= (-1/5) * √2/2
= - √2/10
所以,正确的答案应该是 B
=cosα * cos(π/6) - sinα * sin(π/6) - sinα
= (√3/2) * cosα - (1/2) * sinα - sinα
= (√3/2) * cosα - (3/2) * sinα
= (√3) * [(1/2) * cosα - (√3/2) * sinα]
= (√3) * [cos(π/3) * cosα - sin(π/3) * sinα]
= (√3) * cos(α + π/3)
= 4√3 /5
可以得到:
cos(α + π/3) = 4/5
α + π/3 = arccos(4/5)
α = arccos(4/5) - π/3
α + π/12 = arccos(4/5) - π/3 + π/12 = arccos(4/5) - π/4
所以,
sin(α + π/12)
=sin[arccos(4/5) - π/4]
=sin[arccos(4/5)] * cos(π/4) - cos[arccos(4/5)] * sin(π/4)
= 3/5 * √2/2 - 4/5 * √2/2
= (-1/5) * √2/2
= - √2/10
所以,正确的答案应该是 B
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯