己知各项均为正数的数列{an}满足:a1=3,且anan+12-2(an2-1)an+1-an=0,n∈N*.(1)设bn=an-1an,求数
答案:2 悬赏:20 手机版
解决时间 2021-02-07 13:18
- 提问者网友:人傍凄凉立暮秋
- 2021-02-07 07:01
己知各项均为正数的数列{an}满足:a1=3,且anan+12-2(an2-1)an+1-an=0,n∈N*.(1)设bn=an-1an,求数列{bn}的通项公式;(2)设Sn=a12+a22+…+an2,Tn=1a12+1a22+…+1an2,求Sn+Tn,并确定最小正整数n,使Sn+Tn为整数.
最佳答案
- 五星知识达人网友:醉吻情书
- 2021-02-07 07:15
(1)由题意知,
bn+1=an+1-
1
an+1 =
an+12?1
an+1 =
2(an2?1)
an =2(an?
1
an )=2bn,
b1=a1?
1
a1 =
8
3 ,
∴数列{bn}是公比为2,首项为
8
3 的等比数列,其通项公式为bn=
2n+2
3 .
(2)由(1)有Sn+Tn=(a1?
1
a1 )2+(a2?
1
a2 )2+…+(an?
1
an )2+2n
=(
23
3 )2+(
24
3 )2+…(
2n+2
3 )2+2n
=
64
27 (4n?1)+2n,n∈N*,
为使Sn+Tn=
64
27 (4n?1)2+2n,n∈N*,当且仅当
4n?1
27 为整数.
当n=1,2时,Sn+Tn不为整数,
当n≥3时,4n-1=(1+3)n-1=
bn+1=an+1-
1
an+1 =
an+12?1
an+1 =
2(an2?1)
an =2(an?
1
an )=2bn,
b1=a1?
1
a1 =
8
3 ,
∴数列{bn}是公比为2,首项为
8
3 的等比数列,其通项公式为bn=
2n+2
3 .
(2)由(1)有Sn+Tn=(a1?
1
a1 )2+(a2?
1
a2 )2+…+(an?
1
an )2+2n
=(
23
3 )2+(
24
3 )2+…(
2n+2
3 )2+2n
=
64
27 (4n?1)+2n,n∈N*,
为使Sn+Tn=
64
27 (4n?1)2+2n,n∈N*,当且仅当
4n?1
27 为整数.
当n=1,2时,Sn+Tn不为整数,
当n≥3时,4n-1=(1+3)n-1=
全部回答
- 1楼网友:旧脸谱
- 2021-02-07 08:49
anan-1=an-1-an anan-1+an=an-1 an=an-1/(a(n-1)+1) n>=2 a1=1/3 a2=a1/(a1+1) =1/3/(1/3+1)=1/4 a3=a2/(a2+1)=a1/(a1+1) / (a1/(a1+1)+1) =a1/(a1+a1+1)=a1/(2a1+1) =1/3/(2/3+1) =1/5 a4=a3/(a3+1)=a1/(2a1+1) / ( a1/(2a1+1)+1) =a1/(a1+2a1+1)=a1/(3a1+1) =1/3/(3/3+1)=1/6 ...... an=a1/((n-1)a1+1)=1/3 / ((n-1)1/3 +1) =1/(n-1+3) =1/(n+2) bn=1/an=1/1/(n+2)=n+2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯