称四个面均为直角三角形的三棱锥为“四直角三棱锥”,若在四直角三棱锥SABC中,∠SAB=∠SAC=∠SBC=90°,
答案:1 悬赏:30 手机版
解决时间 2021-04-01 22:08
- 提问者网友:ミ烙印ゝ
- 2021-04-01 02:03
称四个面均为直角三角形的三棱锥为“四直角三棱锥”,若在四直角三棱锥SABC中,∠SAB=∠SAC=∠SBC=90°,
最佳答案
- 五星知识达人网友:你哪知我潦倒为你
- 2021-04-01 03:34
解答:证明:如图,
四直角三棱锥S-ABC中,因为,∠SAB=∠SAC=90°,
所以SA⊥AB,SA⊥AC,又AB∩AC=A,所以SA⊥平面ABC,
而BC?平面ABC,所以SA⊥BC.
又∠SBC=90°,所以SB⊥BC,又SA∩SB=S,所以BC⊥平面SAB.
而AB?平面SAB,所以AB⊥BC,所以∠ABC为直角.
故答案为∠ABC.
四直角三棱锥S-ABC中,因为,∠SAB=∠SAC=90°,
所以SA⊥AB,SA⊥AC,又AB∩AC=A,所以SA⊥平面ABC,
而BC?平面ABC,所以SA⊥BC.
又∠SBC=90°,所以SB⊥BC,又SA∩SB=S,所以BC⊥平面SAB.
而AB?平面SAB,所以AB⊥BC,所以∠ABC为直角.
故答案为∠ABC.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯