单选题已知函数y=loga(5-ax)在[0,1]上是减函数,则实数a的取值范
答案:2 悬赏:0 手机版
解决时间 2021-04-10 21:23
- 提问者网友:遁入空寂
- 2021-04-10 09:55
单选题
已知函数y=loga(5-ax)在[0,1]上是减函数,则实数a的取值范围是A.(0,1)B.(1,5)C.(0,5)D.(1,+∞)
最佳答案
- 五星知识达人网友:迷人又混蛋
- 2021-04-10 11:05
B解析分析:根据a>0且a≠1,可得t=5-ax在[0,1]上是减函数,利用y=loga(5-ax)在[0,1]上是减函数,可得y=logat是增函数,再结合函数的定义域,即可求得a的取值范围.解答:因为a>0且a≠1,所以t=5-ax在[0,1]上是减函数,
因为y=loga(5-ax)在[0,1]上是减函数,
所以y=logat是增函数,
所以a>1
又由函数定义域可知:5-ax在[0,1]时恒大于0
因为5-ax是单调减函数,
所以只须满足当x=1时,5-ax>0
即5-a>0
所以,a<5
综上,a的取值范围是(1,5)
故选B.点评:本题考查复合函数的单调性,考查学生分析解决问题的能力,考查解不等式的能力,属于中档题.
因为y=loga(5-ax)在[0,1]上是减函数,
所以y=logat是增函数,
所以a>1
又由函数定义域可知:5-ax在[0,1]时恒大于0
因为5-ax是单调减函数,
所以只须满足当x=1时,5-ax>0
即5-a>0
所以,a<5
综上,a的取值范围是(1,5)
故选B.点评:本题考查复合函数的单调性,考查学生分析解决问题的能力,考查解不等式的能力,属于中档题.
全部回答
- 1楼网友:不甚了了
- 2021-04-10 11:19
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯