仿射概形是什么意思
答案:1 悬赏:10 手机版
解决时间 2021-03-08 20:08
- 提问者网友:凉末
- 2021-03-08 03:02
仿射概形是什么意思
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-03-08 04:05
问题一:凸优化里的概念:仿射包是什么意思 集合C的仿射包是C中点的所有仿射组合构成的。问题二:数学是什么意思 数学数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
数学分支
1:数学史
2:数理逻辑与数学基础
X轴Y轴(4张)
a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科 3:数论 a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科 4:代数学 a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科 5:代数几何学 6:几何学 a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
7:拓扑学 a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科 8:数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科 9:非标准分析 10:函数论 a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科 11:常微分方程 a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科 12:偏微分方程 a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科 13:动力系统 a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科 14:积分方程 15:泛函分析 a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科 16:计算数学 a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科 17:概率论 a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科 18:数理统计学 a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科 19:应用统计数学 a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟 20:应用统计数学其他学科 ......余下全文>>问题三:什么是齐次空间 就这个上下文来看俺猜应该指的是投射空间(Projective Space)?就是(R^4-{0})/~,其中~的等价关系定义成向量A~向量B当且仅当它们相差一个标量(i.e. A=c*B for c\in R)
简单来说,n维向量的齐次空间是n+1维的。
在OpenVG 这种二维矢量图形加速接口中,规定二维齐次空间坐标系就是一个三维空间。把N维映射到N+1维就是为了能够在高纬度做变换然后在映射到低纬度空间上。
比如,在OpenVG中,要变换一个二维图形,比如是个二维的字母,首先把他变换到三维空间,然后做各种旋转或者拉伸,然后在映射到二维空间上,从而使得二维图像也可以有一些简单的三维特效。
最简单的想法是:在有点和向量混合的情况下,给定一个(x, y, z),我们不知道这个是向量还是点,所以引入齐次坐标(所谓齐次坐标就是用N+1表示N维量),最后一维用1就是点,0就是向量。
在>中,四元数主要是用来做rotation的。用四元数在此书中说有三点好处:
a, 能解决Gimbal Lock;
b, 能平滑的进行插值;
c,处理旋转比矩阵需要的空间小(旋转还可以用矩阵来表示,需要9个slot);
注意:四元数只有在是unit length的时候才能表示旋转。
在3D中我们常用4x4的矩阵,来配合3维空间的点的缩放、旋转、平移运算。因此是3维运算,但是用了4x4,所以我们称之为Homogeneous Matrix,更精确的说是Homogeneous Transformation Matrix。
有网友总结的齐次坐标的如下,个人觉得很容易理解,为防止链接失效,原文拷贝如下(下划线所示):
原文地址:blog.csdn.net/...0.aspx
“4D向量是由3D坐标(x,y,z)和齐次坐标w组成,写作(x,y,z,w)。
在3D世界中为什么需要3D的齐次坐标呢?简单地说明一下,在一维空间中的一条线段上取一点x,然后我们想转移x的位置,那我们应该是x'=x+k,但我们能使用一维的矩阵来表示这变换吗?不能,因为此时一维的矩阵只能让x点伸缩。但如果变成了一维的齐次空间[k 1]就很容易地做到。同样地,在二维空间中,某一图形如果不使用二维的齐次坐标,则只能旋转和伸缩,确不能平移。
因此,我们在3D坐标中使用齐次坐标,是为了物体在矩阵变换中,除了伸缩旋转,还能够平移,如下运算:
既然了解了使用齐次坐标的意义,我们下一步就要了解一下齐次坐标w是什么意义。设w=1,此时相当于我们把3D的坐标平移搬去了w=1的平面上,4D空间的点投影到w=1平面上,齐次坐标映射的3D坐标是(x/w,y/w,z/w),也就是(x,y,z)。(x,y,z)在齐次空间中有无数多个点与之对应。所有点的形式是(kx,ky,kz,k),其轨迹是通过齐次空间原点的“直线”(其实每个点相当于3D的坐标世界)。
当w=0时,有很大的意义,可解释为无穷远的“点”,其意义是描述方向。这也是平移变换的开关,当w=0时,
此时不能平移变换了。这个现象是非常有用的,因为有些向量代......余下全文>>问题四:sift算法中特征点和关键点是同一个描述么?都是指一个像素单元还是指什么 SIFT是我接触最早的图像局部特征描述子之一,其实最初,始终觉得局部特征描述子是些非常玄虚的东西。对于SIFT,这种感觉更是尤为强烈,“尺度空间”“拉普拉斯高斯算子(LoG)”“高斯差分金字塔”,一系列让人头痛的概念。不过,反反复复看了几次,渐渐也就有了感觉,在此总结一下。 物体识别的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相相匹配。而为了进行匹配,我们首先要合理的表示图像。由于目标的自身状态、场景所处的环境的影响,同一类物体在不同的图像中所成的像往往会差别很大,但即使这样,人们所能通过同一物体的一些局部共性来识别出物体(正如我们能将不同国家民族的人区分出来)。所谓局部特征描述子就是用来刻画图像中的这些局部共性的,而我们也可以将一幅图像映射(变换)为一个局部特征的集合。理想的局部特征应具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影影响也应有很好的鲁棒性。传统的局部特征往往是直接提取角点或边缘,对环境的适应能力较差。1999年British Columbia大学 David G.Lowe 教授总结了现有的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SIFT(尺度不变特征变换),这种算法在2004年被加以完善。 SIFT算法的实质可以归为在不同尺度空间上查找关键点(特征点)的问题。所谓关键点,就是一些十分突出的点,这些点不会因光照条件的改变而消失,比如角点、边缘点、暗区域的亮点以及亮区域的暗点,既然两幅图像中有相同的景物, 那么使用某种方法分别提取各自的稳定点,这些点之间就会有相互对应的匹配点。而在SIFT中,关键点是在不同尺度空间的图像下检测出的具有方向信息的局部极值点。涉及到的最重要的两步是:1.构建尺度空间 2.关键点检测 构建尺度空间 先来谈谈尺度的问题。我们要精确表示的物体都是通过一定的尺度来反映的。现实世界的物体也总是通过不同尺度的观察而得到不同的变化。比如说,对同一物体拍照,我们拍摄了一副近景,一副远景,虽然两幅图片中都有这个物体,但这个物体确是处于两个不同的尺度。SIFT特征具有尺度不变性,就是说即使同一物体处于两个不同的尺度的图像中,我们仍可以通过提取图像的SIFT特征匹配成功。 图像的尺度有多种表示方法(金字塔、八叉树等等),在SIFT中Lowe教授采用了尺度空间理论。其主要思想是通过对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,并检测这个序列中的关键点。这样图片就被映射为多个尺度上的关键点信息,尽管两幅图片是处于不同的尺度,但却可以提取出在尺度变换中没有改变的关键点,从而进行关键点匹配,进而识别出物体。 实际上,在尺度空间理论中,是通过对图像进行模糊来模拟多尺度下的图像。直观上,图像的模糊程度逐渐变大,模拟了人在距离目标由近到远时目标在视网膜上的形成过程。文献《Scale-space theory: A basic tool for analysing structures at different scales》证明,高斯核是唯一可以产生多尺度空间的核(其它核会对图像造成模糊之外的其它影响)。一个图像的尺度空间, L(x,y,σ) (σ 可以代表尺度的大小) ,定义为原始图像 I(x,y)与一个可变尺度的2维高斯函数 G(x,y,σ) 卷积运算。高斯函数: G(x,y,σ)=12πσ2e?(x2+y2)/(2σ2) L(x,y,σ)=G(x,y,σ)&......余下全文>>问题五:什么是线性回归? 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,】,而不是一个单一的标量变量。)
回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
数学分支
1:数学史
2:数理逻辑与数学基础
X轴Y轴(4张)
a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科 3:数论 a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科 4:代数学 a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科 5:代数几何学 6:几何学 a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
7:拓扑学 a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科 8:数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科 9:非标准分析 10:函数论 a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科 11:常微分方程 a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科 12:偏微分方程 a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科 13:动力系统 a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科 14:积分方程 15:泛函分析 a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科 16:计算数学 a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科 17:概率论 a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科 18:数理统计学 a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科 19:应用统计数学 a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟 20:应用统计数学其他学科 ......余下全文>>问题三:什么是齐次空间 就这个上下文来看俺猜应该指的是投射空间(Projective Space)?就是(R^4-{0})/~,其中~的等价关系定义成向量A~向量B当且仅当它们相差一个标量(i.e. A=c*B for c\in R)
简单来说,n维向量的齐次空间是n+1维的。
在OpenVG 这种二维矢量图形加速接口中,规定二维齐次空间坐标系就是一个三维空间。把N维映射到N+1维就是为了能够在高纬度做变换然后在映射到低纬度空间上。
比如,在OpenVG中,要变换一个二维图形,比如是个二维的字母,首先把他变换到三维空间,然后做各种旋转或者拉伸,然后在映射到二维空间上,从而使得二维图像也可以有一些简单的三维特效。
最简单的想法是:在有点和向量混合的情况下,给定一个(x, y, z),我们不知道这个是向量还是点,所以引入齐次坐标(所谓齐次坐标就是用N+1表示N维量),最后一维用1就是点,0就是向量。
在>中,四元数主要是用来做rotation的。用四元数在此书中说有三点好处:
a, 能解决Gimbal Lock;
b, 能平滑的进行插值;
c,处理旋转比矩阵需要的空间小(旋转还可以用矩阵来表示,需要9个slot);
注意:四元数只有在是unit length的时候才能表示旋转。
在3D中我们常用4x4的矩阵,来配合3维空间的点的缩放、旋转、平移运算。因此是3维运算,但是用了4x4,所以我们称之为Homogeneous Matrix,更精确的说是Homogeneous Transformation Matrix。
有网友总结的齐次坐标的如下,个人觉得很容易理解,为防止链接失效,原文拷贝如下(下划线所示):
原文地址:blog.csdn.net/...0.aspx
“4D向量是由3D坐标(x,y,z)和齐次坐标w组成,写作(x,y,z,w)。
在3D世界中为什么需要3D的齐次坐标呢?简单地说明一下,在一维空间中的一条线段上取一点x,然后我们想转移x的位置,那我们应该是x'=x+k,但我们能使用一维的矩阵来表示这变换吗?不能,因为此时一维的矩阵只能让x点伸缩。但如果变成了一维的齐次空间[k 1]就很容易地做到。同样地,在二维空间中,某一图形如果不使用二维的齐次坐标,则只能旋转和伸缩,确不能平移。
因此,我们在3D坐标中使用齐次坐标,是为了物体在矩阵变换中,除了伸缩旋转,还能够平移,如下运算:
既然了解了使用齐次坐标的意义,我们下一步就要了解一下齐次坐标w是什么意义。设w=1,此时相当于我们把3D的坐标平移搬去了w=1的平面上,4D空间的点投影到w=1平面上,齐次坐标映射的3D坐标是(x/w,y/w,z/w),也就是(x,y,z)。(x,y,z)在齐次空间中有无数多个点与之对应。所有点的形式是(kx,ky,kz,k),其轨迹是通过齐次空间原点的“直线”(其实每个点相当于3D的坐标世界)。
当w=0时,有很大的意义,可解释为无穷远的“点”,其意义是描述方向。这也是平移变换的开关,当w=0时,
此时不能平移变换了。这个现象是非常有用的,因为有些向量代......余下全文>>问题四:sift算法中特征点和关键点是同一个描述么?都是指一个像素单元还是指什么 SIFT是我接触最早的图像局部特征描述子之一,其实最初,始终觉得局部特征描述子是些非常玄虚的东西。对于SIFT,这种感觉更是尤为强烈,“尺度空间”“拉普拉斯高斯算子(LoG)”“高斯差分金字塔”,一系列让人头痛的概念。不过,反反复复看了几次,渐渐也就有了感觉,在此总结一下。 物体识别的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相相匹配。而为了进行匹配,我们首先要合理的表示图像。由于目标的自身状态、场景所处的环境的影响,同一类物体在不同的图像中所成的像往往会差别很大,但即使这样,人们所能通过同一物体的一些局部共性来识别出物体(正如我们能将不同国家民族的人区分出来)。所谓局部特征描述子就是用来刻画图像中的这些局部共性的,而我们也可以将一幅图像映射(变换)为一个局部特征的集合。理想的局部特征应具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影影响也应有很好的鲁棒性。传统的局部特征往往是直接提取角点或边缘,对环境的适应能力较差。1999年British Columbia大学 David G.Lowe 教授总结了现有的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SIFT(尺度不变特征变换),这种算法在2004年被加以完善。 SIFT算法的实质可以归为在不同尺度空间上查找关键点(特征点)的问题。所谓关键点,就是一些十分突出的点,这些点不会因光照条件的改变而消失,比如角点、边缘点、暗区域的亮点以及亮区域的暗点,既然两幅图像中有相同的景物, 那么使用某种方法分别提取各自的稳定点,这些点之间就会有相互对应的匹配点。而在SIFT中,关键点是在不同尺度空间的图像下检测出的具有方向信息的局部极值点。涉及到的最重要的两步是:1.构建尺度空间 2.关键点检测 构建尺度空间 先来谈谈尺度的问题。我们要精确表示的物体都是通过一定的尺度来反映的。现实世界的物体也总是通过不同尺度的观察而得到不同的变化。比如说,对同一物体拍照,我们拍摄了一副近景,一副远景,虽然两幅图片中都有这个物体,但这个物体确是处于两个不同的尺度。SIFT特征具有尺度不变性,就是说即使同一物体处于两个不同的尺度的图像中,我们仍可以通过提取图像的SIFT特征匹配成功。 图像的尺度有多种表示方法(金字塔、八叉树等等),在SIFT中Lowe教授采用了尺度空间理论。其主要思想是通过对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,并检测这个序列中的关键点。这样图片就被映射为多个尺度上的关键点信息,尽管两幅图片是处于不同的尺度,但却可以提取出在尺度变换中没有改变的关键点,从而进行关键点匹配,进而识别出物体。 实际上,在尺度空间理论中,是通过对图像进行模糊来模拟多尺度下的图像。直观上,图像的模糊程度逐渐变大,模拟了人在距离目标由近到远时目标在视网膜上的形成过程。文献《Scale-space theory: A basic tool for analysing structures at different scales》证明,高斯核是唯一可以产生多尺度空间的核(其它核会对图像造成模糊之外的其它影响)。一个图像的尺度空间, L(x,y,σ) (σ 可以代表尺度的大小) ,定义为原始图像 I(x,y)与一个可变尺度的2维高斯函数 G(x,y,σ) 卷积运算。高斯函数: G(x,y,σ)=12πσ2e?(x2+y2)/(2σ2) L(x,y,σ)=G(x,y,σ)&......余下全文>>问题五:什么是线性回归? 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,】,而不是一个单一的标量变量。)
回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯