勾股定理是中国人先发现的吗
答案:5 悬赏:30 手机版
解决时间 2021-01-25 20:46
- 提问者网友:未信
- 2021-01-25 15:17
勾股定理是中国人先发现的吗
最佳答案
- 五星知识达人网友:爱难随人意
- 2021-01-25 16:02
那么,我们从时间顺序上来看看吧。
在中国,西汉时期的《周髀算经》记载了勾股定理的一些朦胧的说法,这些说法简单地说就是“勾三,股四,弦五”。西汉是刘邦建立的朝代,《周髀算经》大约出现在公元前1世纪。众所周知的是,公元元年是以传说中耶稣基督的生年为公历元年,这一时期相当于中国西汉平帝元始元年。在《周髀算经》中,提到勾股定理最早是由商高发现,故又有称之为商高定理。
那么,商高又是什么人呢?
他是商朝末年西周初年的数学家。也就是说,此人活动于周武王灭商的峥嵘岁月。
目前历史学界还没有考证出商朝到底是哪一年灭亡的——夏商周断代工作缺乏强悍的证据。但总的说来,按照《周髀算经》的说法,勾股定理在中国被发现,发生在周武王灭商(公元前1046年(一说公元前1057年)正月)这一特殊的历史时期。
《周髀算经》中记载了这样一件事——有一次周公(周武王姬发的弟弟,后来的摄政王)问商高:古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?商高回答说:数是根据圆和方的道理得来的,圆从方来,方又从矩来。这里的“矩”原是指包含直角的作图工具,可能就是一个长方形。在这个对话里,商高说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形,这就是历史书上经常提到的“勾三,股四,弦五”。
因此,从文献上记录来看,商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五。而这一时间早于意大利的数学家毕达哥拉斯发现此定理证明五百到六百年。
但是,非常可惜的是,商高没有提供更详细的证明。因为商高所提供的数据(3,4,5)只是勾股定理的一个特例。比如(7,24,25)也满足勾股定理,但却是商高没有指出来的。因此,不能认为商高发现了勾股定理。
而在商高去世大约500年后,活动于意大利的毕达哥拉斯学派,则提出了对这一定理的证明,而且据此发现了无理数的存在。而在这之后又过了大概350年,西汉中期的数学家写了一本书,叫《九章算术》,在这本书的最后一章,作者才给出了勾股定理的完整证明。
因此,笔者认为,中国人只是发现了勾股定理的一个特例,上升到定理层面应当以推倒证明的出现为准。
在中国,西汉时期的《周髀算经》记载了勾股定理的一些朦胧的说法,这些说法简单地说就是“勾三,股四,弦五”。西汉是刘邦建立的朝代,《周髀算经》大约出现在公元前1世纪。众所周知的是,公元元年是以传说中耶稣基督的生年为公历元年,这一时期相当于中国西汉平帝元始元年。在《周髀算经》中,提到勾股定理最早是由商高发现,故又有称之为商高定理。
那么,商高又是什么人呢?
他是商朝末年西周初年的数学家。也就是说,此人活动于周武王灭商的峥嵘岁月。
目前历史学界还没有考证出商朝到底是哪一年灭亡的——夏商周断代工作缺乏强悍的证据。但总的说来,按照《周髀算经》的说法,勾股定理在中国被发现,发生在周武王灭商(公元前1046年(一说公元前1057年)正月)这一特殊的历史时期。
《周髀算经》中记载了这样一件事——有一次周公(周武王姬发的弟弟,后来的摄政王)问商高:古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?商高回答说:数是根据圆和方的道理得来的,圆从方来,方又从矩来。这里的“矩”原是指包含直角的作图工具,可能就是一个长方形。在这个对话里,商高说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形,这就是历史书上经常提到的“勾三,股四,弦五”。
因此,从文献上记录来看,商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五。而这一时间早于意大利的数学家毕达哥拉斯发现此定理证明五百到六百年。
但是,非常可惜的是,商高没有提供更详细的证明。因为商高所提供的数据(3,4,5)只是勾股定理的一个特例。比如(7,24,25)也满足勾股定理,但却是商高没有指出来的。因此,不能认为商高发现了勾股定理。
而在商高去世大约500年后,活动于意大利的毕达哥拉斯学派,则提出了对这一定理的证明,而且据此发现了无理数的存在。而在这之后又过了大概350年,西汉中期的数学家写了一本书,叫《九章算术》,在这本书的最后一章,作者才给出了勾股定理的完整证明。
因此,笔者认为,中国人只是发现了勾股定理的一个特例,上升到定理层面应当以推倒证明的出现为准。
全部回答
- 1楼网友:玩家
- 2021-01-25 19:02
是的 ,中国是世界上最早发现证明并运用勾股定理的国家,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
- 2楼网友:街头电车
- 2021-01-25 18:21
至少中国古代的 商高 就已经发现了.应该是中国最先发现的.这可以查相关的史料的,不容质疑的.
- 3楼网友:神鬼未生
- 2021-01-25 17:37
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩’的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的啊。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。稍懂平面几何的读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。
- 4楼网友:拾荒鲤
- 2021-01-25 16:57
是的。
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系:以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯