问卷网能用spss分析吗,怎么分析
答案:1 悬赏:50 手机版
解决时间 2021-02-08 22:11
- 提问者网友:情歌越听越心酸
- 2021-02-08 12:19
问卷网能用spss分析吗,怎么分析
最佳答案
- 五星知识达人网友:三千妖杀
- 2021-02-08 13:30
一般采用因子分析和回归分析。试卷分为两部分,一部分做探索性因子分析,一部分做验证性因子分析。然后做回归分析。
一:1.探索性因子分析:因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。
主成分分析为基础的反覆法 主成分分析的目的与因子分析不同,它不是抽取变量群中的共性因子,而是将变量□1,□2,…,□□进行线性组合,成为互为正交的新变量□1,□2,…,□□,以确保新变量具有最大的方差:
在求解中,正如因子分析一样,要用到相关系数矩阵或协方差矩阵。其特征值□1,□2,…,□□,正是□1,□2,…,□□的方差,对应的标准化特征向量,正是方程中的系数□,□,…,□。如果□1>□2,…,□□,则对应的□1,□2,…,□□分别称作第一主成分,第二主成分,……,直至第□主成分。如果信息无需保留100%,则可依次保留一部分主成分□1,□2,…,□□(□<□)。
当根据主成分分析,决定保留□个主成分之后,接着求□个特征向量的行平方和,作为共同性□:
□并将此值代替相关数矩阵对角线之值,形成约相关矩阵。根据约相关系数矩阵,可进一步通过反复求特征值和特征向量方法确定因子数目和因子的系数。
因子旋转 为了确定因子的实际内容,还须进一步旋转因子,使每一个变量尽量只负荷于一个因子之上。这就是简单的结构准则。常用的旋转有直角旋转法和斜角旋转法。作直角旋转时,各因素仍保持相对独立。在作斜角旋转时,允许因素间存在一定关系。
Q型因子分析 上述从变量群中提取共性因子的方法,又称R型因子分析和R型主要成分分析。但如果研究个案群的共性因子,则称Q型因子分析和Q型主成分分析。这时只须把调查的□个方案,当作□个变量,其分析方法与R型因子分析完全相同。
因子分析是社会研究的一种有力工具,但不能肯定地说一项研究中含有几个因子,当研究中选择的变量变化时,因子的数量也要变化。此外对每个因子实际含意的解释也不是绝对的。
2.验证性因子分析
探索的因子分析有一些局限性。第一,它假定所有的因子(旋转后) 都会影响测度项。在实际研究中,我们往往会假定一个因子之间没有因果关系,所以可能不会影响另外一个因子的测度项。第二,探索性因子分析假定测度项残差之间是相互独立的。实际上,测度项的残差之间可以因为单一方法偏差、子因子等因素而相关。第三,探索性因子分析强制所有的因子为独立的。这虽然是求解因子个数时不得不采用的机宜之计,却与大部分的研究模型不符。最明显的是,自变量与应变量之间是应该相关的,而不是独立的。这些局限性就要求有一种更加灵活的建模方法,使研究者不但可以更细致地描述测度项与因子之间的关系,而且可以对这个关系直接进行测试。而在探索性因子分析中,一个被测试的模型(比如正交的因子) 往往不是研究者理论中的确切的模型。
二:回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
具体的问题,需要专业基础做,基本思路是这样的!
一:1.探索性因子分析:因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。
主成分分析为基础的反覆法 主成分分析的目的与因子分析不同,它不是抽取变量群中的共性因子,而是将变量□1,□2,…,□□进行线性组合,成为互为正交的新变量□1,□2,…,□□,以确保新变量具有最大的方差:
在求解中,正如因子分析一样,要用到相关系数矩阵或协方差矩阵。其特征值□1,□2,…,□□,正是□1,□2,…,□□的方差,对应的标准化特征向量,正是方程中的系数□,□,…,□。如果□1>□2,…,□□,则对应的□1,□2,…,□□分别称作第一主成分,第二主成分,……,直至第□主成分。如果信息无需保留100%,则可依次保留一部分主成分□1,□2,…,□□(□<□)。
当根据主成分分析,决定保留□个主成分之后,接着求□个特征向量的行平方和,作为共同性□:
□并将此值代替相关数矩阵对角线之值,形成约相关矩阵。根据约相关系数矩阵,可进一步通过反复求特征值和特征向量方法确定因子数目和因子的系数。
因子旋转 为了确定因子的实际内容,还须进一步旋转因子,使每一个变量尽量只负荷于一个因子之上。这就是简单的结构准则。常用的旋转有直角旋转法和斜角旋转法。作直角旋转时,各因素仍保持相对独立。在作斜角旋转时,允许因素间存在一定关系。
Q型因子分析 上述从变量群中提取共性因子的方法,又称R型因子分析和R型主要成分分析。但如果研究个案群的共性因子,则称Q型因子分析和Q型主成分分析。这时只须把调查的□个方案,当作□个变量,其分析方法与R型因子分析完全相同。
因子分析是社会研究的一种有力工具,但不能肯定地说一项研究中含有几个因子,当研究中选择的变量变化时,因子的数量也要变化。此外对每个因子实际含意的解释也不是绝对的。
2.验证性因子分析
探索的因子分析有一些局限性。第一,它假定所有的因子(旋转后) 都会影响测度项。在实际研究中,我们往往会假定一个因子之间没有因果关系,所以可能不会影响另外一个因子的测度项。第二,探索性因子分析假定测度项残差之间是相互独立的。实际上,测度项的残差之间可以因为单一方法偏差、子因子等因素而相关。第三,探索性因子分析强制所有的因子为独立的。这虽然是求解因子个数时不得不采用的机宜之计,却与大部分的研究模型不符。最明显的是,自变量与应变量之间是应该相关的,而不是独立的。这些局限性就要求有一种更加灵活的建模方法,使研究者不但可以更细致地描述测度项与因子之间的关系,而且可以对这个关系直接进行测试。而在探索性因子分析中,一个被测试的模型(比如正交的因子) 往往不是研究者理论中的确切的模型。
二:回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
具体的问题,需要专业基础做,基本思路是这样的!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯