高一三角函数证明题
已知sin^2 (α)/sin^2( β)+cos^2(θ)=1
求证tan^2 (α)=sin^2(θ)tan^2(β)
是这样的
已知【sin^2 (α)】/【sin^2(β)】+cos^2(α)cos^2(θ)=1
求证tan^2 (α)=sin^2(θ)tan^2(β)
高一三角函数证明题 已知sin^2 (α)/sin^2( β)+cos^2(θ)=1 求证tan^2 (α)=sin^2
答案:1 悬赏:40 手机版
解决时间 2021-08-25 10:10
- 提问者网友:凉末
- 2021-08-24 10:25
最佳答案
- 五星知识达人网友:思契十里
- 2021-08-24 11:23
证明:∵cos2θ=(1-sin2α/sin2β)/cos2α=1/cos2α-tan2α/sin2β
∴sin2θ=1-cos2θ=1-1/cos2α+tan2α/sin2β=-tan2α+tan2α/sin2β=tan2α(-1+1/sin2β)=tan2αcot2β
∴sin^2(θ)tan^2(β)=tan2αcot2β×tan2β=tan2α
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯