用反证法证明:将9个球分别染成红色或白色,那么无论怎么染,至少有5个球是同色的.其假设应是( )
A.至少有5个球是同色的
B.至少有5个球不是同色的
C.至多有4个球是同色的
D.至少有4个球不是同色的
用反证法证明:将9个球分别染成红色或白色,那么无论怎么染,至少有5个球是同色的.其假设应是( )
答案:2 悬赏:70 手机版
解决时间 2021-02-12 03:33
- 提问者网友:呐年旧曙光
- 2021-02-11 03:50
最佳答案
- 五星知识达人网友:逃夭
- 2021-02-11 04:17
利用反证法证明数学命题时,应先假设命题的否定成立.
命题:“将9个球分别染成红色或白色,那么无论怎么染,至少有5个球是同色的”的否定为:
“将9个球分别染成红色或白色,那么无论怎么染,任意5个球都不是同色的”,
即“至多有4个球是同色的”,
故选C.
命题:“将9个球分别染成红色或白色,那么无论怎么染,至少有5个球是同色的”的否定为:
“将9个球分别染成红色或白色,那么无论怎么染,任意5个球都不是同色的”,
即“至多有4个球是同色的”,
故选C.
全部回答
- 1楼网友:枭雄戏美人
- 2021-02-11 04:22
你说呢...
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯