如图所示,质量为M的斜面体静止在粗糙的水平地面上,一质量为m的滑块沿斜面匀加速下滑,斜面体对地面压力为F1;现施加一平行斜面向下的推力F作用于滑块,在物块沿斜面下滑的
答案:2 悬赏:10 手机版
解决时间 2021-04-07 20:39
- 提问者网友:暮烟疏雨之际
- 2021-04-07 08:06
如图所示,质量为M的斜面体静止在粗糙的水平地面上,一质量为m的滑块沿斜面匀加速下滑,斜面体对地面压力为F1;现施加一平行斜面向下的推力F作用于滑块,在物块沿斜面下滑的过程中,斜面体对地面压力为F2.则A.F2>(M+m)g,F2>F1B.F2>(M+m)g,F2=F1C.F2<(M+m)g,F2>F1D.F2<(M+m)g,F2=F1
最佳答案
- 五星知识达人网友:过活
- 2021-04-07 08:38
D解析分析:先对m受力分析,得出加速度的表达式,再对整体受力分析,只研究竖直面上的受力情况,由牛顿第二定律可求得竖直面上的加速度,根据超重和失重的知识求得压力.解答:当不受外力时,对m受力分析,由牛顿第二定律可得,mgsinθ-f=ma1;
将加速度向水平和竖直方向分解,则竖直分加速度ay=a1sinθ;
则对整体竖直方向有:Mg+mg-F1=may1;
F1=Mg+mg-may=Mg+mg-(mgsinθ-f)sinθ:
当加推力F后,对m有F+mgsinθ-f=ma2
加速度的竖直分量ay=a2sinθ
则对整体有Mg+mg+Fsinθ-F2=may2;
解得F2=Mg+mg-(mgsinθ-f)sinθ
则可知F1=F2<(M+m)g
故选D.点评:本题如果还是按我们的常规思路,先求m对M的作用力再求压力将是非常繁琐的一个过程;而本解法采用分解加速度的方式求解压力,可简化过程;故在解题中应灵活;即使加速度不同,也可利用整体法求解.
将加速度向水平和竖直方向分解,则竖直分加速度ay=a1sinθ;
则对整体竖直方向有:Mg+mg-F1=may1;
F1=Mg+mg-may=Mg+mg-(mgsinθ-f)sinθ:
当加推力F后,对m有F+mgsinθ-f=ma2
加速度的竖直分量ay=a2sinθ
则对整体有Mg+mg+Fsinθ-F2=may2;
解得F2=Mg+mg-(mgsinθ-f)sinθ
则可知F1=F2<(M+m)g
故选D.点评:本题如果还是按我们的常规思路,先求m对M的作用力再求压力将是非常繁琐的一个过程;而本解法采用分解加速度的方式求解压力,可简化过程;故在解题中应灵活;即使加速度不同,也可利用整体法求解.
全部回答
- 1楼网友:鱼芗
- 2021-04-07 08:59
回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯