永发信息网

请教我十字相乘法

答案:6  悬赏:50  手机版
解决时间 2021-04-04 09:43
数学课上的十字相乘法我没学会,请大家用最简单的语言教教我可以吗?
最佳答案
十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
例:x2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
全部回答
通过例子来说明问题 6x^2-5x-6 3 +2 2 -3 解释6x^2=3x*2x -6=2*(-3) 十字相乘3*(-3)+2*2=-5满足-5x的要求 那 6x^2-5x-6=(3x+2)*(2x-3)
十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 例:x2+2x-15 分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5)
十字相乘法 (1)x2-6x-7 (2)x2+6x-7 (3)x2-8x+7 (4)x2+8x+7 (5)x2-5x+6 (6)x2-5x-6 (7)x2+5x-6 (8)x2+5x+6 解:(1)x2-6x-7=(x-7)(x+1) (2)x2+6x-7=(x+7)(x-1) (3)x2-8x+7=(x-7)(x-1) (4)x2+8x+7=(x+7)(x+1) (5)x2-5x+6=(x-2)(x-3) (6)x2-5x-6=(x-6)(x+1) (7)x2+5x-6=(x+6)(x-1) (8)x2+5x+6=(x+2)(x+3) 点评:此例中的题是易错的典型题,初学时难于避免,主要原因是对十字相乘的原则没有充分认识,即,两常数项的乘积是原多项式的常数项,它们的和是原一次项系数,因此单纯的凑数是不行的,一定注意分解后与原多项式相等.
十字相乘法是化学中计算混合组分的方法: 例如知道CO与CO2的混合气体的平均摩尔质量是36g/mol 我们知道CO的摩尔质量是28g/mol;CO2的摩尔质量是44g/mol CO:28 8 (44-36) 36 CO2:44 8 (36-28) 所以我们知道n(CO):n(CO2)=8:8=1:1 再加上题目中的其他信息,便可达到解题的目的!
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。   十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两    个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x^2;+(p+q)x+pq=(x+p)(x+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解.   上式的常数12可以分解为3*4,而3+4又恰好等于一次项的系数7,所以   上式可以分解为:x^2+7x+12=(x+3)(x+4)   又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5*(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯