设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个整数根,求m的值.
答案:2 悬赏:70 手机版
解决时间 2021-01-03 20:33
- 提问者网友:愿为果
- 2021-01-02 19:36
设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个整数根,求m的值.
最佳答案
- 五星知识达人网友:夜风逐马
- 2021-01-02 21:13
解:∵a=1,b=-2(2m-3),c=4m2-14m+8,
∴△=b2-4ac=4(2m-3)2-4(4m2-14m+8)=4(2m+1).
∵方程有两个整数根,
∴△=4(2m+1)是一个完全平方数,
所以2m+1也是一个完全平方数.
∵4<m<40,
∴9<2m+1<81,
∴2m+1=16,25,36,49或64,
∵m为整数,
∴m=12或24.
代入已知方程,
得x=16,26或x=38,52.
综上所述m为12,或24.解析分析:方程有整数根,则根的判别式就为完全平方数,所以就是求使△为完全平方数的m的值,求得后再代入方程检验即可.点评:一元二次方程有整数根,必须满足根的判别式△=b2-4ac非负或为完全平方数,可根据这两个条件来限定待定系数的取值范围,从而找出解题的思路.
∴△=b2-4ac=4(2m-3)2-4(4m2-14m+8)=4(2m+1).
∵方程有两个整数根,
∴△=4(2m+1)是一个完全平方数,
所以2m+1也是一个完全平方数.
∵4<m<40,
∴9<2m+1<81,
∴2m+1=16,25,36,49或64,
∵m为整数,
∴m=12或24.
代入已知方程,
得x=16,26或x=38,52.
综上所述m为12,或24.解析分析:方程有整数根,则根的判别式就为完全平方数,所以就是求使△为完全平方数的m的值,求得后再代入方程检验即可.点评:一元二次方程有整数根,必须满足根的判别式△=b2-4ac非负或为完全平方数,可根据这两个条件来限定待定系数的取值范围,从而找出解题的思路.
全部回答
- 1楼网友:未来江山和你
- 2021-01-02 21:54
我好好复习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯