如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4,DC=6,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4,DC=6,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的
答案:2 悬赏:70 手机版
解决时间 2021-04-12 17:02
- 提问者网友:欺烟
- 2021-04-11 20:44
最佳答案
- 五星知识达人网友:北方的南先生
- 2021-04-11 21:38
(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,
∴∠EAF=90°.
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°.
∴四边形AEGF是矩形,
又∵AE=AD,AF=AD
∴AE=AF.
∴矩形AEGF是正方形.
(2)解:设AD=x,则AE=EG=GF=x.
∵BD=4,DC=6
∴BE=4,CF=6
∴BG=x-4,CG=x-6
在Rt△BGC中,BG2+CG2=BC2,
∴(x-4)2+(x-6)2=102.
化简得,x2-10x-24=0
解得x1=12,x2=-2(舍去)
所以AD=x=12.解析分析:(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x-4)2+(x-6)2=102,求出AD=x=12.点评:本题考查图形的翻折变换和利用勾股定理,建立关于x的方程模型的解题思想.要能灵活运用.
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,
∴∠EAF=90°.
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°.
∴四边形AEGF是矩形,
又∵AE=AD,AF=AD
∴AE=AF.
∴矩形AEGF是正方形.
(2)解:设AD=x,则AE=EG=GF=x.
∵BD=4,DC=6
∴BE=4,CF=6
∴BG=x-4,CG=x-6
在Rt△BGC中,BG2+CG2=BC2,
∴(x-4)2+(x-6)2=102.
化简得,x2-10x-24=0
解得x1=12,x2=-2(舍去)
所以AD=x=12.解析分析:(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x-4)2+(x-6)2=102,求出AD=x=12.点评:本题考查图形的翻折变换和利用勾股定理,建立关于x的方程模型的解题思想.要能灵活运用.
全部回答
- 1楼网友:孤独入客枕
- 2021-04-11 22:04
谢谢解答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯