如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4cm,DC=6cm,试求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照她的思路回答下列问题:
(1)小萍分别以AB、AC所在的直线为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点分别为点E、F,延长EB、FC相交于G点.试帮她证明四边形AEGF是正方形;
(2)联系(1)的结论,试求出AD的长.
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4cm,DC=6cm,试求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请
答案:2 悬赏:0 手机版
解决时间 2021-01-16 09:24
- 提问者网友:你挡着我发光了
- 2021-01-15 18:48
最佳答案
- 五星知识达人网友:忘川信使
- 2019-11-03 11:22
(1)证明:∵△ABE由△ABD翻折而成,△ACF由△ACD翻折而成,
∴△ABD≌△ABE,△ACD≌△ACF.
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,
∴∠EAF=90°.
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°.
又∵AE=AD,AF=AD
∴AE=AF.
∴四边形AEGF是正方形.
(2)解:设AD=x,则AE=EG=GF=x.
∵BD=4,DC=6
∴BE=4,CF=6
∴BG=x-4,CG=x-6
在Rt△BGC中,BG2+CG2=BC2,
∴(x-4)2+(x-6)2=102,即x2-10x-24=0,解得x1=12,x2=-2(舍去)
∴AD=x=12.解析分析:(1)先根据图形翻折变换的性质可知△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x-4)2+(x-6)2=102,求出AD=x=12.点评:本题考查图形的翻折变换和利用勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
∴△ABD≌△ABE,△ACD≌△ACF.
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,
∴∠EAF=90°.
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°.
又∵AE=AD,AF=AD
∴AE=AF.
∴四边形AEGF是正方形.
(2)解:设AD=x,则AE=EG=GF=x.
∵BD=4,DC=6
∴BE=4,CF=6
∴BG=x-4,CG=x-6
在Rt△BGC中,BG2+CG2=BC2,
∴(x-4)2+(x-6)2=102,即x2-10x-24=0,解得x1=12,x2=-2(舍去)
∴AD=x=12.解析分析:(1)先根据图形翻折变换的性质可知△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x-4)2+(x-6)2=102,求出AD=x=12.点评:本题考查图形的翻折变换和利用勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
全部回答
- 1楼网友:夜风逐马
- 2020-08-16 01:50
我也是这个答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯