求AN(我会)
bn=sinan乘以sinan+1乘以sinan+2,求证:bn是等比数列
求AN(我会)
bn=sinan乘以sinan+1乘以sinan+2,求证:bn是等比数列
Sn=π/12(2n^2+n)
S(n-1)=π/12(2(n-1)^2+n-1)
an=π/12(2(2n-1)+1)=π/12(4n-1)=πn/3-π/12
a(n+1)=πn/3+π/4
a(n+2)=πn/3+7π/12
bn=sin(πn/3-π/12)sin(πn/3+π/4)sin(πn/3+7π/12)
=-sin(πn/3+11π/12)sin(πn/3+π/4)sin(πn/3+7π/12)
b(n+1)=sin(πn/3+π/4)sin(πn/3+7π/12)sin(πn/3+11π/12)
b(n+2)=sin(πn/3+7π/12)sin(πn/3+11π/12)sin(πn/3+15π/12)
=-sin(πn/3+7π/12)sin(πn/3+11π/12)sin(πn/3+π/4)
b(n+1)*b(n+1)=[sin(πn/3+π/4)sin(πn/3+7π/12)sin(πn/3+11π/12)]^2=bn*b(n+2)
bn是等比数列