已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
答案:2 悬赏:0 手机版
解决时间 2021-04-06 20:47
- 提问者网友:雪舞兮
- 2021-04-05 21:56
已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
最佳答案
- 五星知识达人网友:等灯
- 2021-04-05 22:15
见解析解析本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。证明:假设三个方程中都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,(a-b)2+(b-c)2+(c-a)2≤0. ①由题意a、b、c互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.
全部回答
- 1楼网友:一叶十三刺
- 2021-04-05 23:33
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯