在平面上向量AB1垂直向量AB2,向量OB1的模等于向量OB2的模=1,向量AP等于向量AB1+向量AB2若向量OP的模
答案:2 悬赏:70 手机版
解决时间 2021-12-01 23:34
- 提问者网友:送舟行
- 2021-12-01 15:09
在平面上向量AB1垂直向量AB2,向量OB1的模等于向量OB2的模=1,向量AP等于向量AB1+向量AB2若向量OP的模
最佳答案
- 五星知识达人网友:十鸦
- 2021-12-01 15:18
[√7/2,√2]
刚算出结果,过程比较复杂,我去画图,晚点发。
解:以点O为圆心,分别以1为半径作单位圆大⊙O、以1/2为半径作小⊙O,线段B1B2是大⊙O的一条弦,以B1B2为直径的圆是⊙C,由向量AB1⊥向量AB2知点A在⊙C上,由向量AP等于向量AB1+向量AB2知点P也在⊙C上,且点P和点A关于点C对称(即PA是⊙C的直径)。设⊙C与小⊙O的公共点为D.
令⊙C半径为r=|B1B2|/2(即半弦长),|OC|=d(即弦心距),则
考虑到|OP|<1/2,于是⊙C的圆周上必须有点落在小⊙O内部,由图1可知,当⊙C和小⊙O外切时,r最小(即图1中⊙C);当⊙C和小⊙O内切时,r最大(即图1中⊙C‘)。(取开值)
下面先求出最值,由图1——
r²+d²=1
d=r±1/2
(外切时,d=|OC|=|CD|+|OD|=r+1/2;内切时,d=|OC’|=|C‘D|-|OD|=r-1/2.)
于是r²+(r±1/2)²=1
整理得8r²±4r-3=0
解得r=(√7±1)/4 (负根已舍去)
于是(√7-1)/4 【易得此前提即(√7-1)/4
先研究最大值,由图1,直线OC与⊙C有两个交点,取近O的一个为P,P必在小⊙O内部满足题设要求,这时远O的一个为A,最大值必在此时取得,此时|OA|=d+r.(参见图1和图2)
由r²+d²=1,令r=sina,d=cosa,a为锐角,于是
|OA|=d+r=sina+cosa=√2sin(a+b)=√2sin(a+45°),tanb=1可取b=45°.(辅助角公式)
a+45°=90°时取最大值,即a=45°,此时r=sina=√2/2,d=cosa=√2/2.
r=√2/2满足(√7-1)/4
再研究最小值,如图2,P的范围是图2中弧D1D2,于是A的范围是图2中弧AA',过A作OA垂线,垂线在⊙C内部,以OA为半径O为圆心的圆还在垂线内部,故|OA|最小值必在图2中A(或A')处,通过计算得知此时|OA|是定值√7/2(与图2中d或r的取值无关).
在△OCD2中,|OC|=d,|OD2|=1/2,|CD2|=r,于是
cos∠OCD2=(d²+r²-1/4)/(2dr)=(1-1/4)/(2dr)=3/(8dr)
|EC|=|CD2|·cos∠OCD2=r·3/(8dr)=3/(8d)
|AF|²=|ED2|²=|CD2|²-|EC|²=r²-9/(64d²)
|OF|=|OC|+|CF|=|OC|+|EC|=d+3/(8d)
|OA|²=|AF|²+|OF|²=r²-9/(64d²)+[d+3/(8d)]²=r²-9/(64d²)+d²+3/4+9/(64d²)=r²+d²+3/4=1+3/4=7/4
|OA|=√7/2
段首已证无论d或r如何取值,A点在图2中的A点位置时,|OA|最小(取开值),于是|OA|>√7/2.
综合上述,由连续性可知|OA|属于(√7/2,√2].
刚算出结果,过程比较复杂,我去画图,晚点发。
解:以点O为圆心,分别以1为半径作单位圆大⊙O、以1/2为半径作小⊙O,线段B1B2是大⊙O的一条弦,以B1B2为直径的圆是⊙C,由向量AB1⊥向量AB2知点A在⊙C上,由向量AP等于向量AB1+向量AB2知点P也在⊙C上,且点P和点A关于点C对称(即PA是⊙C的直径)。设⊙C与小⊙O的公共点为D.
令⊙C半径为r=|B1B2|/2(即半弦长),|OC|=d(即弦心距),则
考虑到|OP|<1/2,于是⊙C的圆周上必须有点落在小⊙O内部,由图1可知,当⊙C和小⊙O外切时,r最小(即图1中⊙C);当⊙C和小⊙O内切时,r最大(即图1中⊙C‘)。(取开值)
下面先求出最值,由图1——
r²+d²=1
d=r±1/2
(外切时,d=|OC|=|CD|+|OD|=r+1/2;内切时,d=|OC’|=|C‘D|-|OD|=r-1/2.)
于是r²+(r±1/2)²=1
整理得8r²±4r-3=0
解得r=(√7±1)/4 (负根已舍去)
于是(√7-1)/4
先研究最大值,由图1,直线OC与⊙C有两个交点,取近O的一个为P,P必在小⊙O内部满足题设要求,这时远O的一个为A,最大值必在此时取得,此时|OA|=d+r.(参见图1和图2)
由r²+d²=1,令r=sina,d=cosa,a为锐角,于是
|OA|=d+r=sina+cosa=√2sin(a+b)=√2sin(a+45°),tanb=1可取b=45°.(辅助角公式)
a+45°=90°时取最大值,即a=45°,此时r=sina=√2/2,d=cosa=√2/2.
r=√2/2满足(√7-1)/4
再研究最小值,如图2,P的范围是图2中弧D1D2,于是A的范围是图2中弧AA',过A作OA垂线,垂线在⊙C内部,以OA为半径O为圆心的圆还在垂线内部,故|OA|最小值必在图2中A(或A')处,通过计算得知此时|OA|是定值√7/2(与图2中d或r的取值无关).
在△OCD2中,|OC|=d,|OD2|=1/2,|CD2|=r,于是
cos∠OCD2=(d²+r²-1/4)/(2dr)=(1-1/4)/(2dr)=3/(8dr)
|EC|=|CD2|·cos∠OCD2=r·3/(8dr)=3/(8d)
|AF|²=|ED2|²=|CD2|²-|EC|²=r²-9/(64d²)
|OF|=|OC|+|CF|=|OC|+|EC|=d+3/(8d)
|OA|²=|AF|²+|OF|²=r²-9/(64d²)+[d+3/(8d)]²=r²-9/(64d²)+d²+3/4+9/(64d²)=r²+d²+3/4=1+3/4=7/4
|OA|=√7/2
段首已证无论d或r如何取值,A点在图2中的A点位置时,|OA|最小(取开值),于是|OA|>√7/2.
综合上述,由连续性可知|OA|属于(√7/2,√2].
全部回答
- 1楼网友:廢物販賣機
- 2021-12-01 16:30
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯