(s+1)^2/(s^4+2s^3+2s^2+2s+1) 请问这式子怎么因式分解?
答案:1 悬赏:80 手机版
解决时间 2021-02-14 20:20
- 提问者网友:戎马万世
- 2021-02-14 00:28
(s+1)^2/(s^4+2s^3+2s^2+2s+1) 请问这式子怎么因式分解?
最佳答案
- 五星知识达人网友:时间的尘埃
- 2021-02-14 02:07
(s+1)^2/(s^4+2s^3+2s^2+2s+1)
=(s+1)^2/[(s^4+2s^3+s^2)+(s^2+2s+1)]
=(s+1)^2/[s^2(s^2+2s+1)+(s+1)^2]
=(s+1)^2/[s^2(s+1)^2+(s+1)^2]
=(s+1)^2/[(s^2+1)(s+1)^2]
=1/(s^2+1)
=(s+1)^2/[(s^4+2s^3+s^2)+(s^2+2s+1)]
=(s+1)^2/[s^2(s^2+2s+1)+(s+1)^2]
=(s+1)^2/[s^2(s+1)^2+(s+1)^2]
=(s+1)^2/[(s^2+1)(s+1)^2]
=1/(s^2+1)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯