已知m,n为一元二次方程x²-2x-5=0的2个实数根,求2m²+3n²+2m的值
答案:6 悬赏:80 手机版
解决时间 2021-01-21 05:46
- 提问者网友:椧運幽默
- 2021-01-21 01:45
已知m,n为一元二次方程x²-2x-5=0的2个实数根,求2m²+3n²+2m的值
最佳答案
- 五星知识达人网友:迟山
- 2021-01-21 03:24
根据韦达定理
m+n=2 mn=-5
从而 m²+n²=(m+n)²-2mn=14
且 有 m²-2m-5=0 即 m²-2m=5
从而 2m²+3n²+2m=3(m²+n²)-(m²-2m)
=3×14-5
=37
m+n=2 mn=-5
从而 m²+n²=(m+n)²-2mn=14
且 有 m²-2m-5=0 即 m²-2m=5
从而 2m²+3n²+2m=3(m²+n²)-(m²-2m)
=3×14-5
=37
全部回答
- 1楼网友:拾荒鲤
- 2021-01-21 06:45
一楼正解
- 2楼网友:一叶十三刺
- 2021-01-21 05:36
解:一元二次方程aX^2+bX+C=0﹙Δ≥0﹚中,两根X1,X2有如下关系:X1+ X2=-b/a,X1·X2=c/a.)得到:
2m²+3n²+2m=3(m²+n²)-(m²-2m)
m²+n²=(m+n)²-2mn=4-(-10)=14
m为一元二次方程x²-2x-5=0
m²-2m-5=0 即 m²-2m=5
2m²+3n²+2m=3(m²+n²)-(m²-2m)
=3×14-5
=37
2m²+3n²+2m=3(m²+n²)-(m²-2m)
m²+n²=(m+n)²-2mn=4-(-10)=14
m为一元二次方程x²-2x-5=0
m²-2m-5=0 即 m²-2m=5
2m²+3n²+2m=3(m²+n²)-(m²-2m)
=3×14-5
=37
- 3楼网友:夜余生
- 2021-01-21 04:57
晕,拿到这个题目我首先想到是最直接的方法,不是很麻烦的。先解方程,由公式2a分之副b加减根号b方减4ac,解出答案。一个是1+根号6.,另一个是1-根号6,然后代入喽,当然答案有2个,不知道我这样解你懂不懂?
- 4楼网友:纵马山川剑自提
- 2021-01-21 04:34
m,n是一元二次方程x2-2x-5=0的两个实数根
所以m+n=2,mn=-5
所以(m+n)^2=m^2+n^2+2mn=4
m^2+n^2=4-2mn=14
2m^2+3n^2+2m
=2m^2+2n^2+n^2+2m
=2(m^2+n^2)+n^2+2m
=28+n^2+2m
因为n是一元二次方程x2-2x-5=0的根
所以n^2-2n-5=0
n^2=2n+5
所以2m^2+3n^2+2m
=28+n^2+2m
=28+2n++5+2m
=33+2(m+n)
=37
所以m+n=2,mn=-5
所以(m+n)^2=m^2+n^2+2mn=4
m^2+n^2=4-2mn=14
2m^2+3n^2+2m
=2m^2+2n^2+n^2+2m
=2(m^2+n^2)+n^2+2m
=28+n^2+2m
因为n是一元二次方程x2-2x-5=0的根
所以n^2-2n-5=0
n^2=2n+5
所以2m^2+3n^2+2m
=28+n^2+2m
=28+2n++5+2m
=33+2(m+n)
=37
- 5楼网友:duile
- 2021-01-21 03:48
解:首先根据韦达定理(即:一元二次方程aX^2+bX+C=0﹙Δ≥0﹚中,两根X1,X2有如下关系:X1+ X2=-b/a,X1·X2=c/a.)得到:
m+n=2 mn=-5
由题意知:2m²+3n²+2m=3(m²+n²)-(m²-2m)
由于:m²+n²=(m+n)²-2mn=4-(-10)=14
由于m为一元二次方程x²-2x-5=0的实数根,故:
有 m²-2m-5=0 即 m²-2m=5
从而 2m²+3n²+2m=3(m²+n²)-(m²-2m)
=3×14-5
=37
希望对你有所帮助哈!
m+n=2 mn=-5
由题意知:2m²+3n²+2m=3(m²+n²)-(m²-2m)
由于:m²+n²=(m+n)²-2mn=4-(-10)=14
由于m为一元二次方程x²-2x-5=0的实数根,故:
有 m²-2m-5=0 即 m²-2m=5
从而 2m²+3n²+2m=3(m²+n²)-(m²-2m)
=3×14-5
=37
希望对你有所帮助哈!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯