平行线的有关公理和定理?
答案:1 悬赏:80 手机版
解决时间 2021-04-28 04:23
- 提问者网友:沉默菋噵
- 2021-04-27 18:35
有关平行线的公理和定理。急急急
最佳答案
- 五星知识达人网友:酒安江南
- 2021-04-27 19:41
数学定理
同角(或等角)的余角相等。
对顶角相等。
三角形的一个外角等于和它不相邻的两个内角之和。
在同一平面内垂直于同一条直线的两条直线是平行线。
同位角相等,两直线平行。
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。
直角三角形中,斜边上的中线等于斜边的一半。
在角平分线上的点到这个角的两边距离相等。及其逆定理。
夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。
一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。
有三个角是直角的四边形、对角线相等的平行四边形是矩形。
菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。
正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。
在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。
垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。
相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。
圆内接四边形的对角互补,并且任何一个外角等于它的内对角。
切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的性质定理①经过圆心垂直于切线的直线必经过切点。 ②圆的切线垂直于经过切点的半径。 ③经过切点垂直于切线的直线必经过圆心。
切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。
弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。
相交弦定理 ; 切割线定理 ; 割线定理
圆是以圆心为对称中心的中心对称图形;围绕圆心旋转任意一个角度α,都能够与原来的重合.
顶点在圆心的角叫做圆心角.圆心到弦的距离叫做弦心距.
圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理)
切线长定理
垂径定理
圆周角定理
弦切角定理
四圆定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.
把整个圆周等分成360份,每一份弧是1°的弧.圆心角的度数和它所对的弧的度数相等.
圆是中心对称图形,即圆绕其对称中心(圆心)旋转180°后能够与原来图形重合,这一性质不难理解.圆和其他中心对称图形不同,它还具有旋转不变性,即围绕圆心旋转任意一个角度,都能够与原来的图形重合.
垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
圆的两条平行弦所夹的弧相等
(1)一条弧所对的圆周角等于它所对的圆心角的一半.
(2)同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.
(3)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.
(4)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.
(2)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(3)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(4)弦的垂直平分线经过圆心,并且平分弦所对的两条弦.
(5)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
(6)圆的两条平行弦所夹的弧度数相等.
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
平分弦(不是直径)的直径垂直与弦,并且平分弦所对的两条弧.
.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距也相等.
在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角相等,所对的弦的弦心距也相等.
同一个弧有无数个相对的圆周角.
弧的比等于弧所对的圆心角的比.
圆的内接四边形的对角互补或相等.
不在同一条直线上的三个点能确定一个圆.
直径是圆中最长的弦.
一条弦把一个圆分成一个优弧和一个劣弧.
同角(或等角)的余角相等。
对顶角相等。
三角形的一个外角等于和它不相邻的两个内角之和。
在同一平面内垂直于同一条直线的两条直线是平行线。
同位角相等,两直线平行。
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。
直角三角形中,斜边上的中线等于斜边的一半。
在角平分线上的点到这个角的两边距离相等。及其逆定理。
夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。
一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。
有三个角是直角的四边形、对角线相等的平行四边形是矩形。
菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。
正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。
在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。
垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。
相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。
圆内接四边形的对角互补,并且任何一个外角等于它的内对角。
切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的性质定理①经过圆心垂直于切线的直线必经过切点。 ②圆的切线垂直于经过切点的半径。 ③经过切点垂直于切线的直线必经过圆心。
切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。
弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。
相交弦定理 ; 切割线定理 ; 割线定理
圆是以圆心为对称中心的中心对称图形;围绕圆心旋转任意一个角度α,都能够与原来的重合.
顶点在圆心的角叫做圆心角.圆心到弦的距离叫做弦心距.
圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理)
切线长定理
垂径定理
圆周角定理
弦切角定理
四圆定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.
把整个圆周等分成360份,每一份弧是1°的弧.圆心角的度数和它所对的弧的度数相等.
圆是中心对称图形,即圆绕其对称中心(圆心)旋转180°后能够与原来图形重合,这一性质不难理解.圆和其他中心对称图形不同,它还具有旋转不变性,即围绕圆心旋转任意一个角度,都能够与原来的图形重合.
垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
圆的两条平行弦所夹的弧相等
(1)一条弧所对的圆周角等于它所对的圆心角的一半.
(2)同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.
(3)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.
(4)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.
(2)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(3)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(4)弦的垂直平分线经过圆心,并且平分弦所对的两条弦.
(5)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
(6)圆的两条平行弦所夹的弧度数相等.
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
平分弦(不是直径)的直径垂直与弦,并且平分弦所对的两条弧.
.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距也相等.
在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角相等,所对的弦的弦心距也相等.
同一个弧有无数个相对的圆周角.
弧的比等于弧所对的圆心角的比.
圆的内接四边形的对角互补或相等.
不在同一条直线上的三个点能确定一个圆.
直径是圆中最长的弦.
一条弦把一个圆分成一个优弧和一个劣弧.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯