已知函数f(x)=4-x2
(1)试判断函数f(x)的奇偶性,并证明函数f(x)在[0,+∞)是减函数;
(2)解不等式f(x)≥3x.
已知函数f(x)=4-x2(1)试判断函数f(x)的奇偶性,并证明函数f(x)在[0,+∞)是减函数;(2)解不等式f(x)≥3x.
答案:2 悬赏:50 手机版
解决时间 2021-04-05 12:45
- 提问者网友:最爱你的唇
- 2021-04-04 15:42
最佳答案
- 五星知识达人网友:一袍清酒付
- 2021-04-04 17:02
解:(1)f(x)的定义域为R,
又∵f(-x)=[4-(-x)2]=4-x2=f(x),
∴f(x)在R内是偶函数.
设x1,x2∈R,0<x1<x2
∵f(x1)-f(x2)=(4-x12)-(4-x22)=x22-x12=(x2+x1)(x2-x1)
又x1,x2∈R,0<x1<x2,
∴(x2+x1)>0,(x2-x1)>0
∵f(x1)-f(x2)>o
所以函数f(x)在[0,+∞)是减函数;
(2)依题意,得4-x2≥3x,
x2+3x-4≤0,
∴-4≤x≤1,
所以不等式f(x)≥3x的解集为{x|-4≤x≤1解析分析:(1)先求出函数的定义域,求出f(-x),判断出f(-x)与f(x)的关系,利用奇函数偶函数的定义判断出f(x)的奇偶性;设出定义域中的两个自变量,求出两个函数值的差,将差变形,判断出差的符号,据函数单调性的定义判断出函数的单调性.
(2)写出二次不等式,求出二次方程对应的根,据二次不等式解集的形式求出解集.点评:判断函数的奇偶性应该先求出函数的定义域,判断定义域是否关于原点对称,若不对称则函数不具有奇偶性,若对称,再检验f(-x)与f(x)的关系;利用单调性的定义判断函数的单调性一定要将函数值的差变形到能判断出符号为止.
又∵f(-x)=[4-(-x)2]=4-x2=f(x),
∴f(x)在R内是偶函数.
设x1,x2∈R,0<x1<x2
∵f(x1)-f(x2)=(4-x12)-(4-x22)=x22-x12=(x2+x1)(x2-x1)
又x1,x2∈R,0<x1<x2,
∴(x2+x1)>0,(x2-x1)>0
∵f(x1)-f(x2)>o
所以函数f(x)在[0,+∞)是减函数;
(2)依题意,得4-x2≥3x,
x2+3x-4≤0,
∴-4≤x≤1,
所以不等式f(x)≥3x的解集为{x|-4≤x≤1解析分析:(1)先求出函数的定义域,求出f(-x),判断出f(-x)与f(x)的关系,利用奇函数偶函数的定义判断出f(x)的奇偶性;设出定义域中的两个自变量,求出两个函数值的差,将差变形,判断出差的符号,据函数单调性的定义判断出函数的单调性.
(2)写出二次不等式,求出二次方程对应的根,据二次不等式解集的形式求出解集.点评:判断函数的奇偶性应该先求出函数的定义域,判断定义域是否关于原点对称,若不对称则函数不具有奇偶性,若对称,再检验f(-x)与f(x)的关系;利用单调性的定义判断函数的单调性一定要将函数值的差变形到能判断出符号为止.
全部回答
- 1楼网友:深街酒徒
- 2021-04-04 18:40
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯