单选题设集合A={x|1≤x≤2},B={y|1≤y≤4},则下述对应法则f中,不能构
答案:2 悬赏:30 手机版
解决时间 2021-01-03 03:00
- 提问者网友:眉目添风霜
- 2021-01-02 22:20
单选题
设集合A={x|1≤x≤2},B={y|1≤y≤4},则下述对应法则f中,不能构成A到B的映射的是A.f:x→y=x2B.f:x→y=3x-2C.f:x→y=-x+4D.f:x→y=4-x2
最佳答案
- 五星知识达人网友:蓝房子
- 2021-01-02 23:55
D解析分析:按照映射的定义,一个对应能构成映射的条件是,A中的每个元素在集合B中都有唯一的确定的一个元素与之对应. 判断题中各个对应是否满足映射的定义,从而得到结论.解答:对于对应f:x→y=x2,当1≤x≤2 时,1≤x2≤4,在集合A={x|1≤x≤2}任取一个值x,在集合B={y|1≤y≤4}中都有唯一的一个y值与之对应,故A中的对应能够成映射.对于对应f:x→y=3x-2,当1≤x≤2 时,1≤3x-2≤4,在集合A={x|1≤x≤2}任取一个值x,在集合B={y|1≤y≤4}中都有唯一的一个y值与之对应,故B中的对应能够成映射.对于对应f:x→y=-x+4,当1≤x≤2 时,2≤-x+4≤3,在集合A={x|1≤x≤2}任取一个值x,在集合B={y|1≤y≤4}中都有唯一的一个y值与之对应,故B中的对应能够成映射.对于对应f:x→y=4-x2 ,当x=2 时,y=0,显然y=0不在集合B中,不满足映射的定义,故D中的对应不能构成A到B的映射.故选D.点评:本题考查映射的定义,一个对应能构成映射时,必须使A中的每个元素在集合B中都有唯一的确定的一个元素与之对应.
全部回答
- 1楼网友:渡鹤影
- 2021-01-03 00:07
感谢回答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯