我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为______;
(A)2、点P,(B)、点P,(?C)2、点O,(D)、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.
我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三
答案:2 悬赏:30 手机版
解决时间 2021-04-13 19:05
- 提问者网友:孤凫
- 2021-04-13 01:05
最佳答案
- 五星知识达人网友:撞了怀
- 2021-04-13 01:46
(1)解:选择D.
∵△P′Q′R′∽△PQR,且相似比是1:2,
∴位似比是1:2,位似中心为点O.
故选D;
(2)证明:∵E′C′∥EC,E′D′∥ED,
∴△OCE∽△OC′E′,△ODE∽△OD′E′
∴CE:C′E′=OE:OE′,DE:D′E′=OE:OE′,∠CEO=∠C′E′O,∠DEO=∠D′E′O
∴CE:C′E′=DE:D′E′,∠CED=∠C′E′D′
∴△CDE∽△C′D′E′
∵△CDE是等边三角形,
∴△C′D′E′是等边三角形.解析分析:(1)根据中位线定理可知,△P′Q′R′∽△PQR,且相似比是1:2,所以位似比是1:2,位似中心为点O;
(2)根据作法可知:E′C′∥EC,E′D′∥ED,可证得△OCE∽△OC′E′,△ODE∽△OD′E′,根据相似可证的对应边的比相等,对应角相等,即可根据对应边的比成比例且夹角相等的三角形相似,可证得△CDE∽△C′D′E′,即可得结果.点评:此题考查了学生的应用能力,考查了相似三角形的判定与性质,考查了位似图形与相似图形的关系:位似是相似的特殊形式.
∵△P′Q′R′∽△PQR,且相似比是1:2,
∴位似比是1:2,位似中心为点O.
故选D;
(2)证明:∵E′C′∥EC,E′D′∥ED,
∴△OCE∽△OC′E′,△ODE∽△OD′E′
∴CE:C′E′=OE:OE′,DE:D′E′=OE:OE′,∠CEO=∠C′E′O,∠DEO=∠D′E′O
∴CE:C′E′=DE:D′E′,∠CED=∠C′E′D′
∴△CDE∽△C′D′E′
∵△CDE是等边三角形,
∴△C′D′E′是等边三角形.解析分析:(1)根据中位线定理可知,△P′Q′R′∽△PQR,且相似比是1:2,所以位似比是1:2,位似中心为点O;
(2)根据作法可知:E′C′∥EC,E′D′∥ED,可证得△OCE∽△OC′E′,△ODE∽△OD′E′,根据相似可证的对应边的比相等,对应角相等,即可根据对应边的比成比例且夹角相等的三角形相似,可证得△CDE∽△C′D′E′,即可得结果.点评:此题考查了学生的应用能力,考查了相似三角形的判定与性质,考查了位似图形与相似图形的关系:位似是相似的特殊形式.
全部回答
- 1楼网友:神的生死簿
- 2021-04-13 03:14
这下我知道了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯