如图1,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF=90°,交AD于F点,易证EA=EF.
(1)如图2,若EF与AD的延长线交于点F,证明:EA=EF仍然成立;
(2)如图3,若四边形ABCD是平行四边形(AB<BC),在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点.则EA=EF是否成立?若成立,请说明理由.
(3)由题干和(1)(2)你可以得出什么结论.
如图1,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF=90°,交AD于F点,易证EA=EF.(1)如图2,若EF与AD的延长线交于点F,证
答案:2 悬赏:30 手机版
解决时间 2021-03-24 07:53
- 提问者网友:精神病院里
- 2021-03-23 22:49
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-03-23 23:52
(1)证明:∵四边形ABCD是矩形,
∴∠B=90°,AD∥BC,
∵AB=BE,
∴∠AEB=∠FAE=45°,
∵∠AEF=90°,
∴∠FEC=180°-90°-45°=45°=∠AFE,
∴∠FAE=∠AFE,
∴EA=EF;
(2)解:EA=EF仍成立,
理由是:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠B+∠BAD=180°,
∵BA=BE,
∴∠AEB=∠BAE=∠FAE,
∵∠AEF=∠ABE,∠AEB+∠AEF+∠FEC=180°,
∴∠FEC=∠AFE,
∴EA=EF;
(3)解:在任意四边形ABCD中,只要满足AB<BC,AD∥BC,在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点,一定可得EA=EF.解析分析:(1)根据矩形性质得出∠B=90°,AD∥BC,求出∠AEB=∠FAE=45°,求出∠FEC=∠AFE=45°,推出∠FAE=∠AFE,即可得出
∴∠B=90°,AD∥BC,
∵AB=BE,
∴∠AEB=∠FAE=45°,
∵∠AEF=90°,
∴∠FEC=180°-90°-45°=45°=∠AFE,
∴∠FAE=∠AFE,
∴EA=EF;
(2)解:EA=EF仍成立,
理由是:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠B+∠BAD=180°,
∵BA=BE,
∴∠AEB=∠BAE=∠FAE,
∵∠AEF=∠ABE,∠AEB+∠AEF+∠FEC=180°,
∴∠FEC=∠AFE,
∴EA=EF;
(3)解:在任意四边形ABCD中,只要满足AB<BC,AD∥BC,在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点,一定可得EA=EF.解析分析:(1)根据矩形性质得出∠B=90°,AD∥BC,求出∠AEB=∠FAE=45°,求出∠FEC=∠AFE=45°,推出∠FAE=∠AFE,即可得出
全部回答
- 1楼网友:雪起风沙痕
- 2021-03-24 01:14
我明天再问问老师,叫他解释下这个问题
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯