精选
二元一次方程组怎么解 要讲解 怎么消元
答案:2 悬赏:70 手机版
解决时间 2021-02-01 10:02
- 提问者网友:火车头
- 2021-01-31 11:51
最佳答案
- 五星知识达人网友:酒醒三更
- 2021-01-31 13:09
一、消元方法一般分为:
代入消元法,加减消元法,顺序消元法,整体代入法,换元法。
二、
常用:代入消元法:
步骤:
1、将其中一个方程移项
2、系数化为一,变成 X=(多少)Y+常数 的形式
3、代入到剩余的一个方程中,替换X 这样剩余的方程只有一个未知数,就实现了消元
4、再解一元一次方程。
以下是消元方法的举例:
解:x-y=3①
3x-8y=4②
由①,x=y+3③
把③代入②得
3(y+3)-8y=4
解得y=1
再把y=1代入①得
x-1=3
解得x=4
原方程组的解为x=4,y=1
(2)常用:换元法
举例:
(x+5)+(y-4)=8①
(x+5)-(y-4)=4②
令x+5=m,y-4=n
原方程可写为
m+n=8,m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
扩展资料:
解二元一次方程的注意点及理解:
(1)二元一次方程组:由两个二元一次方程所组成的一组方程,叫做二元一次方程组
(2)二元一次方程组的解:二元一次方程组中两个方程的公共解,叫做二元一次方程组的解
应注意:
①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起
②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解。
参考资料:搜狗百科-二元一次方程的解法
代入消元法,加减消元法,顺序消元法,整体代入法,换元法。
二、
常用:代入消元法:
步骤:
1、将其中一个方程移项
2、系数化为一,变成 X=(多少)Y+常数 的形式
3、代入到剩余的一个方程中,替换X 这样剩余的方程只有一个未知数,就实现了消元
4、再解一元一次方程。
以下是消元方法的举例:
解:x-y=3①
3x-8y=4②
由①,x=y+3③
把③代入②得
3(y+3)-8y=4
解得y=1
再把y=1代入①得
x-1=3
解得x=4
原方程组的解为x=4,y=1
(2)常用:换元法
举例:
(x+5)+(y-4)=8①
(x+5)-(y-4)=4②
令x+5=m,y-4=n
原方程可写为
m+n=8,m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
扩展资料:
解二元一次方程的注意点及理解:
(1)二元一次方程组:由两个二元一次方程所组成的一组方程,叫做二元一次方程组
(2)二元一次方程组的解:二元一次方程组中两个方程的公共解,叫做二元一次方程组的解
应注意:
①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起
②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解。
参考资料:搜狗百科-二元一次方程的解法
全部回答
- 1楼网友:洎扰庸人
- 2021-01-31 14:10
消元法解二元一次方程组的概念、步骤与方法 一、概念步骤与方法: 1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法. 2.用代入消元法解二元一次方程组的步骤: (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值. (4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解. 注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值. ⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便. 3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。 用加减消元法解二元一次方程组的基本思路仍然是“消元”. 4.用加减法解二元一次方程组的一般步骤: 第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数. 第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元. 第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑. 注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. ⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好. 5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯