已知a、b、c是△ABC的三边,且满足a4+b2c2=b4+a2c2,试判断△ABC的形状.阅读下面解题过程:
解:由a4+b2c2=b4+a2c2得:
a4-b4=a2c2-b2c2①
(a2+b2)(a2-b2)=c2(a2-b2)???????? ②
即a2+b2=c2③
∴△ABC为Rt△.????????????????④
试问:以上解题过程是否正确:________
若不正确,请指出错在哪一步?(填代号)________
错误原因是________
本题的结论应为________.
已知a、b、c是△ABC的三边,且满足a4+b2c2=b4+a2c2,试判断△ABC的形状.阅读下面解题过程:解:由a4+b2c2=b4+a2c2得:a4-b4=a2
答案:2 悬赏:70 手机版
解决时间 2021-03-11 20:54
- 提问者网友:半生酒醒
- 2021-03-11 15:50
最佳答案
- 五星知识达人网友:轻熟杀无赦
- 2020-11-02 13:50
不正确 ③ 漏掉了a=b时的情况 △ABC为等腰三角形或直角三角形解析分析:由于②到③时等式两边都除以了a2-b2,如果a2-b2=0,根据等式的性质可知,此时不一定有③成立.解答:由a4+b2c2=b4+a2c2得:
a4-b4=a2c2-b2c2,
(a2+b2)(a2-b2)=c2(a2-b2),
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2-b2)(a2+b2-c2)=0,
∴(a2-b2)=0或a2+b2-c2=0,
∴△ABC为等腰三角形或直角三角形.点评:本题主要考查了等式的性质以及等腰三角形、直角三角形的判定.
等式的性质:等式的两边乘以或除以同一个不等于0的数,所得结果仍是等式.
a4-b4=a2c2-b2c2,
(a2+b2)(a2-b2)=c2(a2-b2),
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2-b2)(a2+b2-c2)=0,
∴(a2-b2)=0或a2+b2-c2=0,
∴△ABC为等腰三角形或直角三角形.点评:本题主要考查了等式的性质以及等腰三角形、直角三角形的判定.
等式的性质:等式的两边乘以或除以同一个不等于0的数,所得结果仍是等式.
全部回答
- 1楼网友:空山清雨
- 2021-03-10 19:29
我明天再问问老师,叫他解释下这个问题
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯