永发信息网

什么是机器学习方法

答案:2  悬赏:0  手机版
解决时间 2021-12-23 15:17
什么是机器学习方法
最佳答案
问题一:什么是机器学习? 机器学习通过从数据里提取规则或模式来把数据转换成信息。主要的方法有归纳学习法和分析学习法。数据首先被预处理,形成特征,然后根据特征创建某种模型。机器学习算法分析收集到的数据,分配权重、阈值和其他参数达到学习目的。如果只想把数据分成不同的类,那么“聚类”算法就够了;如果需要预测,则需要一个“分类”算法。OpenCV库里面包含的是基于概率统计的机器学习方法,贝叶斯网络、马尔科夫随机场、图模型等较新的算法还在成长过程中,所以OpenCV还没有收录。机器学习的算法有很多很多:1、Mahalanobis2、K-means 非监督的聚类方法3、朴素贝叶斯分类器 特征是高斯分布&&统计上相互独立 条件比较苛刻4、决策数 判别分类器,根据阈值分类数据,速度快。ID3,C4.55、Boosting 多个判别子分类器的组合6、随机森林 由多个决策树组成7、人脸检测/Haar分类器 使用Boosting算法8、期望最大化EM 用于聚类的非监督生成算法9、K-近邻 最简单的分类器10、神经网络(多层感知器) 训练分类器很慢,但是识别很快11、支持向量机 SVM 可以分类,也可以回归。通过分类超平面实现在高维空间里的最优分类12、遗传算法 借鉴生物遗传机制 ,随机化非线性计算算法总之呢,个人觉得,机器学习、数据挖掘、模式识别、专家系统等方向和领域目前还是一种比较混乱的局面。学术界和商业界可能是不同的,关于算法的理论研究和使用这些方法生成商品是分别关注的。按照不同的领域、不同的方法可以划分出众多的分支。但是有一点是肯定的,这些在上世纪80年代提出来的公式和证明,如今正在变成一行行的代码,在一些猫(tomcat)、IIS等服务器的支持下,爬上了网络,到处寻觅对主人有用的信息,然后运送到网络中,最终生成产品,或者半产品。看看你电脑上的那根网线,它那么小,但是很难想象它从你的电脑上拿走了什么,又给你送来了什么。有些远了,继续说数据这些事。目前我接触过的算法有:(太多了,一时间真不好说出来) 神经网络(感知器、BP、RBF等很多的算法),遗传算法,支持向量机,层次分析法,各种回归,灰色系统(国产的方法,用于不确定知识的预测),粗糙集,贝叶斯网络,时间序列分析(也有很多)。学习和研究纸面的算法公式只是第一步,不可以忽略的基础,如何使用这些方法,在浩瀚的互联网上找到自己需要的、满足客户需要的数据和信息,从而让需要的人能够更加方便地得到,是今后的重头戏了。貌似很多的企业已经进军数据仓库这一块,并尝到了巨大的甜头,也有企业养着一队预备军,专注研发,随时准备奔赴前线,占领市场。无线网络市场的竞争已经到了激烈的局面,普适计算的时代也快到了吧。它依赖于硬件产品的可穿戴,和软件产品的内嵌、快速响应。总而言之,越来越人性化,谁都不愿意抱着笔记本电脑蹲厕所,是吧?问题二:深度学习和机器学习有什么不同 机器学习:machine learning,是计算机科学和统计学的交叉学科,基本目标是学习一个x->y的函数(映射),来做分类或者回归的工作。之所以经常和数据挖掘合在一起讲是因为现在好多数据挖掘的工作是通过机器学习提供的算法工具实现的,例如广告的ctr预估,PB级别的点击日志在通过典型的机器学习流程可以得到一个预估模型,从而提高互联网广告的点击率和回报率;个性化推荐,还是通过机器学习的一些算法分析平台上的各种购买,浏览和收藏日志,得到一个推荐模型,来预测你喜欢的商品。
深度学习:deep learning,机器学习里面现在比较火的一个topic,本身是神经网络算法的衍生,在图像,语音等富媒体的分类和识别上取得了非常好的效果,所以各大研究机构和公司都投入了大量的人力做相关的研究和开发。问题三:机器学习是什么 有一天,你想吃芒果了,你就到地边的小摊上去买芒果,你可以自己用手挑芒果。挑完摊主称重,根据重量付钱。
买芒果嘛,你只要不是重口味或者口味独特,还是选择最甜的,熟透了的芒果。因为你是根据重量来付钱的,又不是根据甜的程度或者熟了的程度,虽然摊主有时候会把好的芒果挑出一堆来单独涨价,但是这里这个摊主没这么做。
奶奶曾经告诉过你,芒果要买金黄色的,黄橙橙黄灿灿的,这样的最甜,不要买那些浅黄色的,因为还没熟透。
这样你就有了一点经验,虽然这点经验是别人直接教给我的:“甜芒果,就是金黄色的”。
生活没那么简单
回家,高高兴兴吃芒果,但是很快你会发现,并不是每个芒果都那么甜,有些不甜。奶奶的经验不是100%正确。只通过颜色判断芒果甜不甜,不是很靠谱。
你回忆后发现“好像是又大又金黄色的比较甜,那些小点的金黄色的芒果,得有一半是不甜。”(买了100个金黄色的芒果,有50个大的,都是甜的;另外有50个小的,其中有25个是不甜的。)
你总结出来一条经验规则了:大的金黄色的是最甜的。哈哈。你又高高兴兴的去买芒果。Shit,你熟悉的、你信得过的那个摊主走了。所以你得
换一个小摊买芒果了,但是新的摊主的芒果是产自不同的地方,你之前总结的经验可能不行了,你不知道能不能迁移过去(transfer
learning),于是你从头再开始尝试吧,发现这里小的,浅黄色的是最甜的!
一天,你表妹来找你玩,想吃芒果,但是她不在乎甜不甜,她喜欢吃多汁的。唉,以前的经验又不顶用了。你只能进行新的一轮实验,目标就是多汁的芒果(优化目标变了)。你又总结出,越软的越多汁。
你出国了读PhD,这里的芒果跟你家乡的差不太大了,这里绿色的最好吃。PhD毕业后,你结婚了,老婆不喜欢吃芒果,喜欢吃苹果。你积累的丰富的挑
if (color is bright yellow and size is big and sold by favorite
vendor): mango is sweet.
if (soft): mango is juicy.etc.
但是你想啊,这些规则越来越多的话,特征之间的组合啥的就越来越麻烦了,管理、使用都很麻烦。包括写程序实现啊,谁会笨到写这么多IfThen。机器学习
随机的选择了一个市场上的芒果,作为要研究的目标(training
data)。你可以用一个表格描述芒果属性和类型的关系,每一行可以放一个芒果的数据,包括芒果的物理属性(feature):颜色、大小、形状、软硬度、产地,等等,还有这么芒果的类型(output
variables):甜度、成熟度、多汁度。然后这就是一个多分类问题,或者回归问题,自动的从数据中学习出特征与芒果类型的各种关系等。
如果你用决策树算法,那么这个模型的样子就是你的规则库了;当然你可以使用其他模型,例如线性模型,这样就是特征的线性组合了。
甚至你的选择芒果的模型,稍微变化下就可以选择苹果了,迁移学习。
甚至你的模型会随着新的样本、新芒果种类进来后,变的越来越好,增量学习。转自-丕子 原文基础上稍作修改问题四:什么是机器学习 机器学习通过从数据里提取规则或模式来把数据转换成信息。主要的方法有归纳学习法和分析学习法。数据首先被预处理,形成特征,然后根据特征创建某种模型。机器学习算法分析收集到的数据,分配权重、阈值和其他参数达到学习目的。如果只想把数据分成不同的类,那么“聚类”算法就够了;如果需要预测,则需要一个“分类”算法。OpenCV库里面包含的是基于概率统计的机器学习方法,贝叶斯网络、马尔科夫随机场、图模型等较新的算法还在成长过程中,所以OpenCV还没有收录。
机器学习的算法有很多很多:1、Mahalanobis
2、K-means 非监督的聚类方法3、朴素贝叶斯分类器 特征是高斯分布&&统计上相互独立 条件比较苛刻4、决策数 判别分类器,根据阈值分类数据,速度快。ID3,C4.5
5、Boosting 多个判别子分类器的组合6、随机森林 由多个决策树组成7、人脸检测/Haar分类器 使用Boosting算法8、期望最大化EM 用于聚类的非监督生成算法
9、K-近邻 最简单的分类器10、神经网络(多层感知器) 训练分类器很慢,但是识别很快11、支持向量机 SVM 可以分类,也可以回归。通过分类超平面实现在高维空间里的最优分类
12、遗传算法 借鉴生物遗传机制 ,随机化非线性计算算法总之呢,个人觉得,机器学习、数据挖掘、模式识别、专家系统等方向和领域目前还是一种比较混乱的局面。学术界和商业界可能是不同的,关于算法的理论研究和使用这些方法生成商品是分别关注的。按照不同的领域、不同的方法可以划分出众多的分支。但是有一点是肯定的,这些在上世纪80年代提出来的公式和证明,如今正在变成一行行的代码,在一些猫(tomcat)、IIS等服务器的支持下,爬上了网络,到处寻觅对主人有用的信息,然后运送到网络中,最终生成产品,或者半产品。看看你电脑上的那根网线,它那么小,但是很难想象它从你的电脑上拿走了什么,又给你送来了什么。有些远了,继续说数据这些事。目前我接触过的算法有:(太多了,一时间真不好说出来) 神经网络(感知器、BP、RBF等很多的算法),遗传算法,支持向量机,层次分析法,各种回归,灰色系统(国产的方法,用于不确定知识的预测),粗糙集,贝叶斯网络,时间序列分析(也有很多)。学习和研究纸面的算法公式只是第一步,不可以忽略的基础,如何使用这些方法,在浩瀚的互联网上找到自己需要的、满足客户需要的数据和信息,从而让需要的人能够更加方便地得到,是今后的重头戏了。貌似很多的企业已经进军数据仓库这一块,并尝到了巨大的甜头,也有企业养着一队预备军,专注研发,随时准备奔赴前线,占领市场。无线网络市场的竞争已经到了激烈的局面,普适计算的时代也快到了吧。它依赖于硬件产品的可穿戴,和软件产品的内嵌、快速响应。总而言之,越来越人性化,谁都不愿意抱着笔记本电脑蹲厕所,是吧?问题五:什么是机器学习 机器学习的本质是模式识别。 一部分可以用于预测(有监督学习,无监督学习),另一类直接用于决策(强化学习)。相对物理微分方程代表的预测方法来说,机器学习在一定程度说是一种黑箱思想, 即先不求开始找到事物发展的精确模型,而是用基本的模型框架,直接以数据驱动我们的预测。问题六:机器学习算法有哪些?最常用是哪些几种?有什么优点 楼主肯定对机器学习了解不多才会提这种问题。这问题专业程度看起来和“机器学习工程师”这词汇一样。
机器学习,基础的PCA模型理论,贝叶斯,boost,Adaboost,
模式识别中的各种特征,诸如Hog,Haar,SIFT等
深度学习里的DBN,CNN,BP,RBM等等。
非专业出身,只是略懂一点。
没有常用的,只是针对需求有具体的设计,或者需要自己全新设计一个合适的算法,现在最热门的算是CNN(convolutional neural networks)卷积神经网络了。
优点:不需要训练获取特征,在学习过程中自动提取图像中的特征,免去了常规方法中,大量训练样本的时间。在样本足够大的情况下,能够得到非常精确的识别结果。一般都能95%+的正确率。
缺点:硬件要求高,CUDA的并行框架算是用的很火的了。但是一般的台式机跑一个Demo花费的时间长资源占用高。不过这也是这块算法的通病。问题七:机器学习中使用到底是一个什么原理 总的来说可以认为是学习一个模型去描述数据之间的关系。最基本的假设就是通过现在拥有的数据去预测以后出现的数据(这个假设现在已经有证明了),机器学习充当的成分就是那个预测者的成分。最基本的原理当然就是机器学习的学习能力,一般来说,算法不同,原理也不一样的。问题八:机器学习的分类 基于学习策略的分类 学习策略是指学习过程中系统所采用的推理策略。一个学习系统总是由学习和环境两部分组成。由环境(如书本或教师)提供信息,学习部分则实现信息转换,用能够理解的形式记忆下来,并从中获取有用的信息。在学习过程中,学生(学习部分)使用的推理越少,他对教师(环境)的依赖就越大,教师的负担也就越重。学习策略的分类标准就是根据学生实现信息转换所需的推理多少和难易程度来分类的,依从简单到复杂,从少到多的次序分为以下六种基本类型:1)机械学习 (Rote learning)学习者无需任何推理或其它的知识转换,直接吸取环境所提供的信息。如塞缪尔的跳棋程序,纽厄尔和西蒙的LT系统。这类学习系统主要考虑的是如何索引存贮的知识并加以利用。系统的学习方法是直接通过事先编好、构造好的程序来学习,学习者不作任何工作,或者是通过直接接收既定的事实和数据进行学习,对输入信息不作任何的推理。2)示教学习 (Learning from instruction或Learning by being told)学生从环境(教师或其它信息源如教科书等)获取信息,把知识转换成内部可使用的表示形式,并将新的知识和原有知识有机地结合为一体。所以要求学生有一定程度的推理能力,但环境仍要做大量的工作。教师以某种形式提出和组织知识,以使学生拥有的知识可以不断地增加。这种学习方法和人类社会的学校教学方式相似,学习的任务就是建立一个系统,使它能接受教导和建议,并有效地存贮和应用学到的知识。不少专家系统在建立知识库时使用这种方法去实现知识获取。示教学习的一个典型应用例是FOO程序。3)演绎学习 (Learning by deduction)学生所用的推理形式为演绎推理。推理从公理出发,经过逻辑变换推导出结论。这种推理是保真变换和特化(specialization)的过程,使学生在推理过程中可以获取有用的知识。这种学习方法包含宏操作(macro-operation)学习、知识编辑和组块(Chunking)技术。演绎推理的逆过程是归纳推理。4)类比学习 (Learning by analogy)利用二个不同领域(源域、目标域)中的知识相似性,可以通过类比,从源域的知识(包括相似的特征和其它性质)推导出目标域的相应知识,从而实现学习。类比学习系统可以使一个已有的计算机应用系统转变为适应于新的领域,来完成原先没有设计的相类似的功能。类比学习需要比上述三种学习方式更多的推理。它一般要求先从知识源(源域)中检索出可用的知识,再将其转换成新的形式,用到新的状况(目标域)中去。类比学习在人类科学技术发展史上起着重要作用,许多科学发现就是通过类比得到的。例如著名的卢瑟福类比就是通过将原子结构(目标域)同太阳系(源域)作类比,揭示了原子结构的奥秘。5)基于解释的学习 (Explanation-based learning, EBL)学生根据教师提供的目标概念、该概念的一个例子、领域理论及可操作准则,首先构造一个解释来说明为什该例子满足目标概念,然后将解释推广为目标概念的一个满足可操作准则的充分条件。EBL已被广泛应用于知识库求精和改善系统的性能。著名的EBL系统有迪乔恩(G.DeJong)的GENESIS,米切尔(T.Mitchell)的LEXII和LEAP, 以及明顿(S.Minton)等的PRODIGY。6)归纳学习 (Learning from induction)归纳学习是由教师或环境提供某概念的一些实例或反例,让学生通过归纳推理得出该概念的一般描述。这种学习的推理工作量远多于示教学习和......余下全文>>问题九:机器学习中使用到底是一个什么原理 如果把模式识别类问题看作函数拟合
机器学习就相当于输入正反实例输出期望结论值的一个函数逼近
不同的机器学习方法相当于一个函数结构,多数传统模式识别方法都是简单结构的,这就造成如果问题的复杂度较高就会超出方法可达到的最好程度
最基本的例子是线性分类器无法正禒划分
+ -
- +
这样的模式
简单来说所谓的学习能力就是方法本能可能达到的最大复杂度。应用方面就是在一定允许错误率下可以逼近的问题的复杂程度。
学习能力强的如神经网络、SVM,只要允许的复杂度足够,几乎可以达到任意复杂问题的逼近能力。
与学习能力相对的是泛化能力,就是预测新样本的准确率。问题十:机器学习中使用到底是一个什么原理 机器学习通俗的说,就是用简单粗暴的方法来发现事物内在的联系。比如我想做手势识别,我需要一个函数,函数的输入是手势数据,输出是不同手势的类型。我需要用各种手势数据来训练这个函数,使这个函数能有正确的输出。
全部回答
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
广州到青岛,烟台方向有客船吗,船票到哪买。
不同意见是什么词语的解释
魔兽世界GatherMate
持有至到期投资溢价
单选题Can you imagine the
肉臊子面的臊子怎么做
52度春夏秋冬民族颂这个酒怎么样?
现实里的人和手机拍的照片(人脸)(不美颜不
如图,△ABC中,∠A=60°,BC=6,它的周长为1
辛毗引裾①阅读答案
单选题由于人民群众不了解政策而同国家工作人
闹的反义词是什么字
电话号码是十一位数字的都是移动手机的吗?有
新风一队地址在什么地方,想过去办事
不同日光温室的优点及缺点?
推荐资讯
以点带面的近义词成语
I have haircut you.A. same; asB. the sam
现在是21世纪多少年代?距离22世纪还有多久?
单选题下面的词语解释有误的一项是A.池沼:比
电热水器怎么除垢
术前谈话,为何谈,谈什么,怎么谈
如何查询移动手机号的客户名称
手机店取名大全
巴中市119社会抢险救援中心位置在什么地方啊
远古装备礼盒选哪个
大栅栏怎么走
数学公式怎么在EXCEL中打出来?
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?