已知二次函数f(x)满足f(-1+x)=f(-1-x),且f(x)截x轴上的弦长为4,且过点(0,-1),求函数解析式
答案:3 悬赏:30 手机版
解决时间 2021-03-17 02:59
- 提问者网友:棒棒糖
- 2021-03-16 04:24
已知二次函数f(x)满足f(-1+x)=f(-1-x),且f(x)截x轴上的弦长为4,且过点(0,-1),求函数解析式
最佳答案
- 五星知识达人网友:妄饮晩冬酒
- 2021-03-16 05:17
设f(x)=ax²+bx+c,
由 f(-1+x)=f(-1-x)得,对称轴为x=-1
即 b/2a=1,b=2a
又f(0)=c=-1,
所以 f(x)=ax²+2ax-1
令ax²+2ax-1=0,
则x1+x2=-2,x1·x2=-1/a
因为|x2-x1|=4,
所以 (x2-x1)²=16
即 (x1+x2)² -4x1·x2=16
4+4/a=16,解得 a=1/3
所以 f(x)=(1/3)x²+(2/3)x -1
由 f(-1+x)=f(-1-x)得,对称轴为x=-1
即 b/2a=1,b=2a
又f(0)=c=-1,
所以 f(x)=ax²+2ax-1
令ax²+2ax-1=0,
则x1+x2=-2,x1·x2=-1/a
因为|x2-x1|=4,
所以 (x2-x1)²=16
即 (x1+x2)² -4x1·x2=16
4+4/a=16,解得 a=1/3
所以 f(x)=(1/3)x²+(2/3)x -1
全部回答
- 1楼网友:洒脱疯子
- 2021-03-16 06:43
设二次函数的解析式是y=ax^2 bx c 由f(0)=1得到c=1, f(x)满足f(x 1)-f(x)=2x,所以得到a(x 1)^2 b(x 1) 1-(ax^2 bx c)=2x恒成立 展开得到2ax a b=2x 所以a=1 b=-1 函数的解析式是y=x^2-x 1 f(x)>g(x)在r上恒成立 得到x^2-3x 1>m 恒成立 又x^2-3x 1的最小值是-5\4 所以m<-5\4
- 2楼网友:青尢
- 2021-03-16 05:26
f(x)满足f(-1+x)=f(-1-x), 得:二次函数的对称轴为x=-1, f(x)户功膏嘉薇黄疙萎躬联截x轴上的弦长为4, 得f(x)过点(1,0)和(-3,0), 可设所求函数为f(x)=a(x-1)(x+3),(a≠0), f(x)又过点(0,-1), ∴-1=a(-1)(3),得a=1/3 所以f(x)=1/3(x-1)(x+3)=1/3x²+2/3x-1
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯