如图1,四边形ABCD是正方形,点E是边BC的中点. ,且EF交正方形外角 的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证 ,所以 .
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
(1)正确.·································································· (1分)
证明:在 上取一点 ,使 ,连接 . (2分)
. , .
是外角平分线,
,
.
.
, ,
.
(ASA).·············································································· (5分)
.······································································································· (6分)
(2)正确.····························································· (7分)
证明:在 的延长线上取一点 .
使 ,连接 .········································ (8分)
.
.
四边形 是正方形,
.
.
.
(ASA).············································································· (10分)
.
解:(1)正确.理由如下:
证明:在BA延长线上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.理由如下:
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.