为什么有理数集与复数集之间可以有无数个不是实数的数域
答案:2 悬赏:80 手机版
解决时间 2021-04-12 00:24
- 提问者网友:我的未来我做主
- 2021-04-11 10:02
为什么有理数集与复数集之间可以有无数个不是实数的数域
最佳答案
- 五星知识达人网友:一叶十三刺
- 2021-04-11 10:14
有理数是实数域的子域,实数域是复数域的子域。在这个意义上讲有理数域是最小的数域,复数域是最大的数域。
“最小”是说,不可能在减少元素的情况下保持域的性质。“最大”是说:不可能在增加不同的元素的情况下仍然保持数域的性质。当然这都需要证明,在《近世代数》里面都已经予以完全的证明,有兴趣的话可以去读《近世代数》。
“最小”是说,不可能在减少元素的情况下保持域的性质。“最大”是说:不可能在增加不同的元素的情况下仍然保持数域的性质。当然这都需要证明,在《近世代数》里面都已经予以完全的证明,有兴趣的话可以去读《近世代数》。
全部回答
- 1楼网友:躲不过心动
- 2021-04-11 11:09
复数是由虚数和实数组成的是最大的,它包括所有的数
即 复数=虚数+实数
虚数和实数是并列关系
实数是由有理数和无理数组成的
即 实数=有理数+ 无理数
有理数和无理数是并列关系
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯