请问反三角函数的运算法则是什么啊?
答案:1 悬赏:30 手机版
解决时间 2021-11-29 15:02
- 提问者网友:浪荡绅士
- 2021-11-28 15:28
请问反三角函数的运算法则是什么啊?
最佳答案
- 五星知识达人网友:蕴藏春秋
- 2021-11-28 16:18
反三角函数
y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]
y=arccos(x),定义域[-1,1] , 值域[0,π]
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)
y=arccot(x),定义域(-∞,+∞),值域(0,π)
sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx
反三角函数的一些公式:
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘
arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctan x = x - x^3/3 + x^5/5 -……
举例
当 x∈[-π/2,π/2] 有arcsin(sinx)=x
x∈[0,π], arccos(cosx)=x
x∈(-π/2,π/2), arctan(tanx)=x
x∈(0,π), arccot(cotx)=x
x>0,arctanx=π/2-arctan1/x,arccotx类似
若 (arctanx+arctany)∈(-π/2,π/2),则 arctanx+arctany=arctan((x+y)/(1-xy))
例如,arcsinχ表示角α,满足α∈[-π/2,π/2]且sinα=χ;arccos(-4/5)表示角β,满足β∈[0,π]且cosβ=-4/5;arctan2表示角φ,满足φ∈(-π/2,π/2)且tanφ=2
y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]
y=arccos(x),定义域[-1,1] , 值域[0,π]
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)
y=arccot(x),定义域(-∞,+∞),值域(0,π)
sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx
反三角函数的一些公式:
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘
arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctan x = x - x^3/3 + x^5/5 -……
举例
当 x∈[-π/2,π/2] 有arcsin(sinx)=x
x∈[0,π], arccos(cosx)=x
x∈(-π/2,π/2), arctan(tanx)=x
x∈(0,π), arccot(cotx)=x
x>0,arctanx=π/2-arctan1/x,arccotx类似
若 (arctanx+arctany)∈(-π/2,π/2),则 arctanx+arctany=arctan((x+y)/(1-xy))
例如,arcsinχ表示角α,满足α∈[-π/2,π/2]且sinα=χ;arccos(-4/5)表示角β,满足β∈[0,π]且cosβ=-4/5;arctan2表示角φ,满足φ∈(-π/2,π/2)且tanφ=2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯