设函数f(x)=2x-cosx,{an}是公差为π8的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a5
答案:2 悬赏:0 手机版
解决时间 2021-04-14 13:34
- 提问者网友:山高云阔
- 2021-04-14 00:31
设函数f(x)=2x-cosx,{an}是公差为π8的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a5=______.
最佳答案
- 五星知识达人网友:怙棘
- 2021-04-14 01:58
∵f(x)=2x-cosx,
∴可令g(x)=2x+sinx,∵{an}是公差为
π
8 的等差数列,f(a1)+f(a2)+…+f(a5)=5π
∴g(a1-
π
2 )+g(a2-
π
2 )+…+g(a5-
π
2 )=0,则a3=
π
2 ,a1=
π
4 ,a5=
3π
4
∴[f(a3)]2-a1a5=π2-
π
4 ?
3π
4 =
13π2
16 ,
故答案为:
13π2
16
∴可令g(x)=2x+sinx,∵{an}是公差为
π
8 的等差数列,f(a1)+f(a2)+…+f(a5)=5π
∴g(a1-
π
2 )+g(a2-
π
2 )+…+g(a5-
π
2 )=0,则a3=
π
2 ,a1=
π
4 ,a5=
3π
4
∴[f(a3)]2-a1a5=π2-
π
4 ?
3π
4 =
13π2
16 ,
故答案为:
13π2
16
全部回答
- 1楼网友:迷人又混蛋
- 2021-04-14 02:03
∵数列{an}是公差为π/8的等差数列,
且f(a1)+f(a2)+……+f(a5)=5π
2a1-cosa1+2a2-cosa2+2a3-cosa3+2a4-cosa4+2a5-cosa5=5π
∴2(a1+a2+……+a5)-(cosa1+cosa2+……+cosa5)=5π
∴(cosa1+cosa2+……+cosa5)=0
即2(a1+a2+……+a5)=2×5a3=5π,
a3=π/2,
a1=π/4
a5=3π/4
∴[f(a3)]²-a1a5
=(2a3-cosa3)²-a1a5
=(2*π/2-cosπ/2)²-π/4*3π/4
=π²-3π²/16
=13π²/16
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯