请问右导数和导数在某点的右极限有什么区别,怎么用,最好举例说明一下,谢谢,急急急急急急急…
答案:2 悬赏:60 手机版
解决时间 2021-02-10 02:31
- 提问者网友:雾里闻花香
- 2021-02-09 16:55
请问右导数和导数在某点的右极限有什么区别,怎么用,最好举例说明一下,谢谢,急急急急急急急…
最佳答案
- 五星知识达人网友:雾月
- 2021-02-09 18:22
右导数是考虑那个点的增量,而导数的右极限是考虑那个点右边的导数。
比如f(x)=x^2sin(1/x) (x≠0); 0 (x=0)
x=0这一点的右导数为lim(x→0+)(x^2sin(1/x)-0)/x=lim(x→0+)xsin(1/x)=0
而右导数的极限是lim(x→0+)f'(x)=lim(x→0+)(2xsin(1/x)-x^2cos(1/x)*1/x^2)=lim(x→0+)(2xsin(1/x)-cos(1/x))不存在
比如f(x)=x^2sin(1/x) (x≠0); 0 (x=0)
x=0这一点的右导数为lim(x→0+)(x^2sin(1/x)-0)/x=lim(x→0+)xsin(1/x)=0
而右导数的极限是lim(x→0+)f'(x)=lim(x→0+)(2xsin(1/x)-x^2cos(1/x)*1/x^2)=lim(x→0+)(2xsin(1/x)-cos(1/x))不存在
全部回答
- 1楼网友:一叶十三刺
- 2021-02-09 19:21
你说呢...
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯