求三道高一函数最值题目.
1.若函数f(x)=ax²+bx不是偶函数且有最大值M,比较M和0的大小关系.
2.求y=1/(-x²-4x-10)的最小值.
3.求y=x + 1/(2x-1) 【x>0.5】的最小值.
求三道高一函数最值题目.
答案:1 悬赏:80 手机版
解决时间 2021-07-19 04:09
- 提问者网友:贪了杯
- 2021-07-18 08:24
最佳答案
- 五星知识达人网友:像个废品
- 2021-07-18 09:45
解1)f(x)=ax²+bx=a(x+b/2a)^2-b^2/4a;又知函数不为偶函数且存在最大值 则有a0
2)令g(x)=-x²-4x-10=-(x+2)^2-6易知其最大值为-6,故y=1/g(x)存在最小值-1/60)带入得y=t/2+1/t+1/2展开得t^2+(1-2y)t+2=0(y>1/2)由题意知函数有最小值故存在y使方程在t>0使方程有实数根;故只需△=(1-2y)^2-8》0即可解得y》1/2+根号2或y《1/2-根号2(舍去)故函数最小值为1/2+根号2>0[如果你学过均值不等式的话,此题可直接利用均值不等式求得]
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯