【tanx的平方的不定积分】求(tanx)平方的不定积分即S(tanx)^2dx谢谢啦请给出必要的步骤让...
答案:2 悬赏:70 手机版
解决时间 2021-03-06 07:03
- 提问者网友:暗中人
- 2021-03-05 23:17
【tanx的平方的不定积分】求(tanx)平方的不定积分即S(tanx)^2dx谢谢啦请给出必要的步骤让...
最佳答案
- 五星知识达人网友:猎心人
- 2021-03-06 00:13
【答案】 原式=S (sin x)^2/(cos x)^2 dx
=S [1-(cos x)^2]/(cos x)^2 dx
=S 1/(cos x)^2 dx - S 1dx
S 1dx = x + C
S 1/(cos x)^2 dx中
令 t=1/cos x
则 dx = (cos x)^2/sin x dt
即 dx = 1/{ t [(t^2 - 1)]^0.5 } dt
∴ S 1/(cos x)^2 dx
= S t^2 /{ t [(t^2 - 1)]^0.5 } dt
= S t /[(t^2 - 1)]^0.5 dt
= 1/2 S 1/[(t^2 - 1)]^0.5 d(t^2)
= (t^2 - 1)^0.5 + C
= [1/(cos x)^2 - 1]^0.5 + C
= tan x + C
∴S (tan x)^2 dx
= tan x - x + C
=S [1-(cos x)^2]/(cos x)^2 dx
=S 1/(cos x)^2 dx - S 1dx
S 1dx = x + C
S 1/(cos x)^2 dx中
令 t=1/cos x
则 dx = (cos x)^2/sin x dt
即 dx = 1/{ t [(t^2 - 1)]^0.5 } dt
∴ S 1/(cos x)^2 dx
= S t^2 /{ t [(t^2 - 1)]^0.5 } dt
= S t /[(t^2 - 1)]^0.5 dt
= 1/2 S 1/[(t^2 - 1)]^0.5 d(t^2)
= (t^2 - 1)^0.5 + C
= [1/(cos x)^2 - 1]^0.5 + C
= tan x + C
∴S (tan x)^2 dx
= tan x - x + C
全部回答
- 1楼网友:人间朝暮
- 2021-03-06 00:25
我学会了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯