求 lim n→∞ ∫[1,0]x^n*dx/(1+x^(1/2)+x) 说是按定积分的定义或性质求,怎么求呢?
求 lim n→∞ ∫[1,0]x^n*dx/(1+x^(1/2)+x) 说是按定积分的定义或性质求,怎么求呢?
答案:1 悬赏:60 手机版
解决时间 2021-08-01 00:03
- 提问者网友:临风不自傲
- 2021-07-31 21:07
最佳答案
- 五星知识达人网友:轮獄道
- 2021-07-31 21:42
对被积函数做估计即可.
当0=1,因此
x^n>=被积函数>=x^n/3
于是 ∫[1,0]x^ndx>=∫[1,0]x^n*dx/(1+x^(1/2)+x)>=∫ [1,0]x^n/3dx
即 1/(n+1)>=∫[1,0]x^n*dx/(1+x^(1/2)+x)>=1/(3(n+1)),
由夹逼定理知道原极限是0.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯