设m,n,p为任意非负整数,证明x^2+x+1|x^3m+x^(3n+1)+x^(3p+2)
答案:3 悬赏:0 手机版
解决时间 2021-11-11 08:31
- 提问者网友:太高姿态
- 2021-11-11 00:44
设m,n,p为任意非负整数,证明x^2+x+1|x^3m+x^(3n+1)+x^(3p+2)
最佳答案
- 五星知识达人网友:英雄的欲望
- 2021-11-11 01:43
x^3m+x^(3n+1)+x^(3p+2)
=x^3m-1+x^(3n+1)-x+x^(3p+2)-x^2+1+x+x^2
=(x^3-1)(1+x^3+...+x^(3m-3)) + x(x^3-1)(1+x^3+...+x^(3n-3)) +x^2(x^3-1)(1+x^3+...+x^(3p-3))+1+x+x^2
=(x-1)(1+x+x^2)(1+x^3+...+x^(3m-3)) + x(x-1)(1+x+x^2)(1+x^3+...+x^(3n-3)) +x^2(x-1)(1+x+x^2)(1+x^3+...+x^(3p-3))+1+x+x^2
每一项都有因式1+x+x^2
因此,x^2+x+1|x^3m+x^(3n+1)+x^(3p+2)
=x^3m-1+x^(3n+1)-x+x^(3p+2)-x^2+1+x+x^2
=(x^3-1)(1+x^3+...+x^(3m-3)) + x(x^3-1)(1+x^3+...+x^(3n-3)) +x^2(x^3-1)(1+x^3+...+x^(3p-3))+1+x+x^2
=(x-1)(1+x+x^2)(1+x^3+...+x^(3m-3)) + x(x-1)(1+x+x^2)(1+x^3+...+x^(3n-3)) +x^2(x-1)(1+x+x^2)(1+x^3+...+x^(3p-3))+1+x+x^2
每一项都有因式1+x+x^2
因此,x^2+x+1|x^3m+x^(3n+1)+x^(3p+2)
全部回答
- 1楼网友:掌灯师
- 2021-11-11 02:35
证明什么,你题目是不是错了
- 2楼网友:迟山
- 2021-11-11 02:21
证明:原式=x^3m+x^(3n+1)+x^(3p+2)=[x^3m-1]+[x^(3n+1)-x]+[x^(3p+2)-x^2]+(1+x+x^2)
=[x^3m-1]+x[x^3n-1]+x^2[x^3p-1]+(1+x+x^2)
由于:x^2+x+1|x^3m-1;x^2+x+1|x^3n-1;x^2+x+1|x^3p-1
所以:x^2+x+1|x^3m+x^(3n+1)+x^(3p+2)
=[x^3m-1]+x[x^3n-1]+x^2[x^3p-1]+(1+x+x^2)
由于:x^2+x+1|x^3m-1;x^2+x+1|x^3n-1;x^2+x+1|x^3p-1
所以:x^2+x+1|x^3m+x^(3n+1)+x^(3p+2)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯