如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+
答案:1 悬赏:20 手机版
解决时间 2021-08-17 04:21
- 提问者网友:且恨且铭记
- 2021-08-16 14:57
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-08-16 15:39
证明:延长FD,取点G,使DG=FD,连接EG
∵D是AB的中点
∴AD=BD
∵DG=FD,∠ADG=∠BDF
∴△ADG全等于△BDF
∴AG=BF,∠DAG=∠B
∵∠C=90
∴∠CAB+∠B=90
∴∠CAB+∠DAG=90
∴∠EAG=90
∴EG²=AE²+AG²
∴EG²=AE²+BF²
∵DE⊥DF,DF=DG
∴ED垂直平分GF
∴EF=EG
∴EF²=AE²+BF²
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯