抛物线y=ax2+bx+c(a≠0)经过(1,0)点,其顶点为(2,2),若方程ax2+bx+c=k有两个不相等的实数根,求实数k的取值范围.
答案:2 悬赏:40 手机版
解决时间 2021-04-11 22:06
- 提问者网友:世勋超人
- 2021-04-11 18:11
抛物线y=ax2+bx+c(a≠0)经过(1,0)点,其顶点为(2,2),若方程ax2+bx+c=k有两个不相等的实数根,求实数k的取值范围.
最佳答案
- 五星知识达人网友:拾荒鲤
- 2021-04-11 19:34
解:∵二次函数y=ax2+bx+c的顶点坐标为(2,2),
∴设抛物线解析式为y=a(x-2)2+2,
将点(1,0)代入,得a=-2,
抛物线开口向下,函数y=ax2+bx+c最大值为2,
∴当ax2+bx+c=k有两个不相等的实数根时,
k<2.解析分析:将两点代入可得出抛物线关系式,然后根据开口方向确定k的取值范围.点评:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.
∴设抛物线解析式为y=a(x-2)2+2,
将点(1,0)代入,得a=-2,
抛物线开口向下,函数y=ax2+bx+c最大值为2,
∴当ax2+bx+c=k有两个不相等的实数根时,
k<2.解析分析:将两点代入可得出抛物线关系式,然后根据开口方向确定k的取值范围.点评:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.
全部回答
- 1楼网友:人间朝暮
- 2021-04-11 20:59
你的回答很对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯